logo
Статическое моделирование систем

Моделирование случайной величины, распределенной по заданному закону:

Распределение: f(x)=b(3-x), b>0

Границы распределения 1<x<2

Оценка статистических характеристик случайного процесса:

Случайное возмущение: помехи во втором канале СУ распределены по равномерному закону.

Исходная матрица В равна:

Параметры управления: m1=2 и m2=-3.

1. Моделирование случайной величины, распределённой по нормальному закону

1.1 Построение гистограммы распределения

Для получения реализации последовательности независимых случайных величин с произвольным распределением используют реализации последовательности независимых случайных величин равномерно распределенных на отрезке [0,1]. Случайные равномерно распределенные величины генерируются специальной программой, входящей в математическое обеспечение компьютера, и называемой датчиком случайных чисел.

При моделировании нормально распределенной случайной величины на основе равномерно распределенных величин чаще всего используется центральная предельная теорема:

Пусть последовательность взаимно независимых случайных величин, имеющих одно и то же распределение вероятностей с конечным математическим ожиданием . Тогда при имеем:

1) случайная величина , вычисляемая по формуле (1.1), сходится по вероятности к

(1.1)

2) случайная величина имеет асимптотически нормальное распределение вероятностей с центром и дисперсией, вычисляемой по формуле (1.2), при условии, что существует общая дисперсия величин .

(1.2)

На основании центральной предельной теоремы рассмотрим сумму

,

где - совокупность взаимно независимых равномерно распределенных случайных величин на отрезке R[0,1].

Известно, что каждая из случайных величин с распределением R[0,1] имеет математическое ожидание (1.3) и дисперсию (1.4).

(1.3)

(1.4)

Тогда согласно теоремам сложения математических ожиданий и дисперсий

,

.

Следовательно, случайная величина (1.5) имеет математическое ожидание и дисперсию и при ее распределение стремится к нормальному.

(1.5)

В данной работе дано количество слагаемых в сумме N, задано математическое ожидание и стандартное отклонение выходной случайной величины y. Если известна случайная величина с распределением N[0,1], то случайная величина с распределением N[] получается в результате линейного преобразования

(1.6)

Гистограмма распределения представляет собой удобный способ представления статистических данных. Гистограмма строится следующим образом:

Пусть имеется выборка случайной величины объемом n: . Из этой выборки определяются минимальные (1.7) и максимальные (1.8) значения:

(1.7)

При данных условиях

(1.8)

При данных условиях

Весь отрезок [A,B] разбивается на K интервалов, как правило, одинаковой длины.

Число интервалов при построении гистограммы не должно быть слишком большим и слишком малым. При большом количестве интервалов в гистограмме обнаруживаются незакономерные колебания. На практике рекомендуется в каждом интервале иметь не менее 5-10 точек. Предварительный выбор количества интервалов можно сделать по правилу Стургенса:

(1.9)

где n - объём выборки,

() - операция взятия целой части от действительного числа Если число точек в интервале слишком мало (порядка 1-2), то имеет смысл объединить некоторые интервалы и пересчитать гистограмму.

Найдя количество интервалов разбиения, можно вычислить длину каждого интервала по формуле:

или

(1.10)

Для построения гистограммы нужно частоту попадания случайных величин xk в каждый интервал [) разделить на его длину и полученную величину взять в качестве высоты прямоугольника на графике. Причем последний интервал необходимо рассмотреть как отрезок. Таким образом, описанное правило можно изобразить математически:

(1.11)

(1.12)

где и - границы интервала,

- частота попадания выборочных величин в интервал ()

n - объём выборки

- высота прямоугольника на графике

Из способа построения гистограммы следует, что полная площадь всех прямоугольников равна единице:

(1.13)

где fs(x) - эмпирическая плотность распределения (полученная экспериментально), которую можно вычислить по формуле:

(1.14)

На полученную гистограмму для качественного анализа необходимо наложить теоретическую плотность распределения случайной величины, распределенной по закону

(1.15)

В итоге получится гистограмма распределения (см. график 1) с отображением эмпирической и теоретической плотностей распределения, которая даёт возможность наглядно сравнить эти плотности.

График 1 - Сравнение эмпирической и теоретической плотностей распределения

1.2 Вычисление выборочного среднего и выборочной дисперсии

В качестве оценки для математического ожидания (выборочного среднего) используется среднее арифметическое от наблюдаемых значений случайной величины:

(1.16)

Тогда выборочную дисперсию можно рассчитать по следующей формуле:

(1.17)

Для дисперсии в качестве несмещенной и состоятельной оценки используется величина:

(1.18)

Полученная оценка для дисперсии применяется для дальнейших вычислений доверительных интервалов.

1.3 Построение доверительных интервалов для математического ожидания и дисперсии, соответствующих доверительной вероятности

Чтобы иметь представление о точности и надежности оценок (1.16 - 1. 18) в математической статистике используется понятие доверительного интервала. Пусть для некоторого параметра a (математического ожидания или дисперсии) получена несмещенная оценка м. Назначим некоторую достаточно большую вероятность г (доверительную вероятность) и найдем такое значение е, при котором вероятность равна (1.19):

(1.19)

Равенство (1.19) означает, что с вероятностью г интервал Iг, который называется доверительным интервалом, накрывает неизвестное значение параметра a.

(1.20)

При построении доверительного интервала для математического ожидания используют то обстоятельство, что оценка (1.16) представляет собой сумму n независимых одинаково распределенных случайных величин Xi и, согласно центральной предельной теореме, при достаточно больших n ее закон распределения близок к нормальному закону. В этом случае доверительный интервал для оценки математического ожидания можно представить в виде

(1.21)

где tг - квантиль нормального распределения, который определяется по статистическим таблицам.

Границы доверительного интервала вычислены по формулам (1.22-1.23).

, (1.22)

, (1.23)

Определенный доверительный интервал (1.21) является приближенным, так как вместо точного значения дисперсии используется ее оценка Dn. Величина tг определяет для нормального закона число стандартных отклонений, которое нужно отложить вправо и влево от оценки математического ожидания для того, чтобы вероятность попадания в полученный интервал была равна г.

Существуют более точные методы определения доверительного интервала. Например, методы определения доверительного интервала для оценки математического ожидания на основе распределения Стьюдента, где вместо квантиля нормального распределения используется квантиль распределения Стьюдента, который также находится по таблицам.

, (1.24)

,

, (1.25)

Теоретическое значение математического ожидания входит в доверительный интервал. Аналогично может быть получен доверительный интервал для дисперсии. Оценка дисперсии также представляет собой сумму n случайных величин. Однако эти величины уже нельзя считать независимыми, так как в любую из них входит оценка Xmean. Но и этом случае при увеличении n закон распределения их суммы также приближается к нормальному. Поэтому доверительный интервал для дисперсии определяется так же, как и для математического ожидания и имеет вид:

Iг=(Dn-е, Dn+е),

где е вычисляется по формуле (1.26):

, (1.26)

где Dd - дисперсия оценки Dn.

, (1.27)

Конечные формулы границ доверительного интервала имеют вид:

, (1.28)

, (1.29)

Более точный доверительный интервал для оценки дисперсии может быть получен при нормальном распределении на основе распределения чІ. Однако в отличие от нормального распределения и распределения Стьюдента распределение чІ не является симметричным распределением. Поэтому выберем интервал Iг так, чтобы вероятность выхода величины вправо и влево были одинаковы и равны и . Чтобы построить интервал с таким свойством, необходимо воспользоваться таблицами распределения чІ. В этом случае доверительный интервал для оценки дисперсии в соответствии с обозначением примет вид:

,

где Dn - несмещённая оценка,

ч1І, ч2І - могут быть найдены по стандартной программе Mathcad (1.30-1.31).

, (1.30)

, (1.31)

Конечные формулы границ доверительного интервала имеют вид:

, ,

,

Несмещённая оценка входит в доверительный интервал (D=уІ, уІ - стандартное отклонение).

1.4 Проверка гипотезы о нормальном распределении случайной величины с помощью критерия Пирсона при определённом уровне значимости

На основании полученной выборки значений случайной величины необходимо проверить гипотезу о её нормальном распределении. Рассмотрим один из наиболее часто применяемых критериев согласия - критерий Пирсона, который имеет следующий вид:

, (1.32)

где нk - число точек в k-ом интервале гистограммы (частота попадания) pk - теоретические вероятности попадания точек в k-ый интервал, которые могут быть вычислены по формуле (1.33) n - объём выборки случайной величины, К - количество интервалов

(1.33)

где f(х) - плотность вероятности теоретического распределения (1.15)

Величина (1.32) распределена по закону с К-1 степенями свободы. Если теоретические вероятности зависят от q неизвестных параметров, оцениваемых по выборке, то количество степеней свободы равно K-q-1.

Для распределения ч2 составлены специальные таблицы. В них по заданному числу степеней свободы н и по заданной вероятности б (уровню значимости) можно найти граничное табличное значение критерия .

Если теперь , то гипотеза не противоречит статистическим данным и ее можно считать правдоподобной с уровнем значимости .

Если же , то статистические данные следует считать противоречащим гипотезе о том, что плотность распределения величины Х есть f(x) (1.15). Пусть K - количество интервалов, на которые разбит диапазон изменения каждой переменной. Количество интервалов К вычисляется по правилу Стургерса. Для вычисления используется встроенная функция Mathcad (1.34):

, (1.34)

где n - количество реализаций случайного процесса.

Тогда границы интервалов можно вычислить по формулам:

, ,

где Xmax, Xmin - максимальное и минимальное значение реализации случайного процесса.

Для определения частоты попадания выборочных значений в каждый k-ый интервал по переменной Х воспользуемся формулой (1.35):

, (1.35)

где k=1..K - номер интервала,

uk - точки, лежащие на границе интервала,

n - количество реализаций случайной величины

Сумма частот всех интервалов должна быть равна количеству реализаций случайной функции n, так как все точки функции распределены на K интервалах.

Теоретическая вероятность попадания случайной величины X в интервал для нормального распределения вычисляется по формуле (1.36):

, (1.36)

Статистика критерия Пирсона .

Табличное значение статистики при уровне значимости ?=0.01 и количестве степеней свободы ?=7 вычисляется с помощью встроенной функции Mathcad (1.38):

, (1.37)

Очевидно, что . Это значит, что гипотеза о нормальном распределении случайной величины принимается.

Таким образом, в данной главе была построена гистограмма распределения с отображением эмпирической и теоретической плотностей распределения, найдены математическое ожидание , дисперсия .

Построен доверительный интервал для математического ожидания двумя способами:

1. Приближенный доверительный интервал для оценки математического ожидания. Его границы и .

2. Доверительный интервал для оценки математического ожидания на основе распределения Стьюдента. Его границы и .

Теоретическое значение математического ожидания попадает в доверительный интервал.

Построен доверительный интервал для дисперсии двумя способами:

1. Приближенный доверительный интервал для оценки дисперсии. Его границы и .

2. Доверительный интервал для оценки дисперсии на основе распределения со степенью свободы n-1. Его границы и .

Теоретическая дисперсия попадает в доверительный интервал.

Найдена статистика Пирсона . Произведена проверка гипотезы о нормальном распределении случайной величины X, при использовании критерия Пирсона при уровне значимости б: гипотеза принята, так как найденная статистика чІ меньше табличной .

Полный текст программы данного раздела см. в «Приложении 1».