Статическое моделирование систем

курсовая работа

3.1 Определение статистических характеристик системы управления в момент времени

В момент времени оцениваются следующие статистические характеристики:

1) математические ожидания переменных состояния;

2) дисперсии переменных состояния;

3) корреляционный момент;

4) нормированный корреляционный момент (коэффициент корреляции)

Математическим ожиданием случайного процесса называется такая функция, значение которой при каждом данном значении аргумента равно математическому ожиданию значения этой функции при этом аргументе. Математическое ожидание случайного процесса представляет собой некоторую среднюю функцию, около которой группируются и относительно которой колеблются все возможные реализации случайного процесса.

Для полученных процессов математическое ожидание находится по следующим формулам (3.5-3.6):

, , (3.5-3.6)

где Xmean, Ymean являются математическим ожиданием.

Дисперсией случайного процесса называется такая функция, значение которой при каждом данном значении аргумента равно дисперсии значения этой функции при этом аргументе.

Для полученных процессов дисперсия находится по следующим формулам (3.7-3.8):

, (3.7)

(3.8)

Для того чтобы учесть статистическую связь между значениями функции при различных значениях аргумента, кроме математического ожидания и дисперсии, анализируются корреляционные моменты между значениями случайного процесса в различные моменты времени. Корреляционный момент между двумя значениями функции в определённые моменты времени определяет корреляционную функцию случайного процесса. В программе корреляционный момент вычисляется по формуле (3.9):

(3.9)

Случайные процессы называются некоррелированными, если KOR=0 при любых значениях аргументов. В противоположном случае случайные процессы являются коррелированными.

Удобно пользоваться нормированной корреляционной функцией (коэффициентом корреляции), которая является безразмерной функцией и определяется следующим образом (3.10):

, (3.10)

где KOR - взаимный корреляционный момент

DX, DY - дисперсии переменных состояния (определены выше).

Делись добром ;)