Строение идеалов полукольца натуральных чисел

курсовая работа

1.2 Описание идеалов в

Определение 6. Собственный идеал P коммутативного полукольца S называется простым, если или для любых идеалов A и B.

Теорема A. Если S - коммутативное полукольцо, то идеал P прост тогда и только тогда, когда влечет [6].

Простыми идеалами в являются, очевидно, нулевой идеал и идеалы p. Идеал, порожденный составным числом, не может быть простым. Более того, если составное число n=ab является элементом системы образующих идеала I, то элементы a,b не лежат в идеале I, и следовательно, I не прост. Таким образом, система образующих простого идеала может состоять только из простых чисел.

Пусть P - простой идеал в , не являющийся главным, и ? элементы из его системы образующих. Поскольку и взаимно просты, то по второму следствию теоремы 2 все натуральные числа, начиная с некоторого, лежат в идеале P. Значит, P содержит некоторые степени чисел 2 и 3. В силу простоты идеала P, 2 и 3 будут лежать в P. Идеал, порожденный числами 2 и 3, является единственным простым идеалом, не являющимся главным.

Таким образом, простыми идеалами полукольца являются следующие идеалы, и только они:

1. нулевой идеал;

2. главные идеалы, порожденные произвольным простым числом;

3. двухпорожденный идеал (2,3).

Определение 7. Собственный идеал M полукольца S называется максимальным, если влечет или для каждого идеала A в S.

Теорема Б. Максимальный идеал коммутативного полукольца прост.[6]

В нулевой идеал и идеалы, порожденные произвольным простым числом, не являются максимальными, так как включены в идеал (2,3), который не совпадает с ними и с . Таким образом, максимальным является двухпорожденный идеал (2,3) - наибольший собственный идеал в .

Множество простых идеалов можно упорядочить следующим образом:

Здесь наибольшим элементом является двухпорожденный идеал (2,3), а наименьшим - нулевой идеал.

Определение 8. Идеал I полукольца S называется полустрогим, если влечет

Теорема 6. Полустрогий идеал полукольца в точности является главным идеалом.

Доказательство. Главные идеалы, очевидно, являются полустрогими. Предположим, что в системе образующих полустрогого идеала может быть больше двух образующих. Пусть два элемента m и n - наименьшие в системе образующих идеала, и Рассмотрим равенство m+x=n, в нем x очевидно меньше, чем n. Это означает, что x принадлежит идеалу только в том случае, когда элемент x представим в виде x=ms, где . Тогда n линейно выражается через m, а противоречит тому, что m и n - образующие.

Множество полустрогих идеалов можно упорядочить следующим образом:

Здесь наибольшим является идеал, порожденный 1, на уровень ниже его находятся идеалы, порожденные простыми числами, еще ниже - порожденные произведением двух простых чисел, дальше трех и так далее.

Определение 9. Идеал I полукольца S называется строгим, если влечет и

Cтрогий идеал обязательно является полустрогим, а в полукольце и главным. Идеалы (0) и (1), очевидно, являются строгими. В любых других главных идеалах их образующие можно представить в виде суммы 1 и числа, на 1 меньше образующей, и оба этих слагаемых не будут принадлежать I. Таким образом, строгими идеалами полукольца являются только (0) и (1).

Делись добром ;)