Теорема Гурвица и ее приложение

курсовая работа

2. Вспомогательные определения

Комплексные числа- числа вида х + iy, где х и у -- действительные числа, а i -- так называемая мнимая единица (число, квадрат которого равен --1); х называют действительной частью, а у -- мнимой частью.

Размерность пространства: векторное пространство над полем F называется -мерным, если в нем существуют линейно независимых векторов, а любые векторов уже являются линейно зависимыми. При этом число называется размерностью пространства . Размерность пространства обычно обозначают символом .

n-мерное Евклидово пространство над полем F: Вещественное векторное пространство называется вещественным евклидовым пространством (или просто евклидовым пространством), если выполнены следующие два требования:

Имеется правило, посредством которого любым двум элементам этого пространства и ставится в соответствие вещественное число, называемое скалярным произведением этих элементов (и обозначаемое символом ).

Указанное правило подчинено следующим четырем аксиомам:

(коммутативность или симметрия);

(дистрибутивность скалярного произведения относительно сложения);

;

, если ; , если .

Подпространство- такое подмножество пространства L, которое само является пространством.

Ортонормированный базис: Говорят, что элементов -мерного евклидова пространства образуют ортонормированный базис этого пространства, если эти элементы попарно ортогональны и норма каждого из них равна единице, т.е. если

Билинейное отображение: Пусть L-линейное пространство над полем Р. Тогда отображение называется билинейным, если

,

Сюръективное отображение- отображение , которое каждому элементу из сопоставляет, по крайней мере, один прообраз, т.е. .

Ядро: Пусть - гомоморфизм кольца R в кольцо S. Множество , где 0-нуль в S, -ядро.

Обратимая матрица-матрица, для которой существует обратная матрица.

Невырожденная матрица - квадратная матрица, определитель которой отличен от нуля.

Симметричная матрица - матрица является симметричной, если она совпадает со своей транспонированной матрицей (т.е. A = A). Другими словами, нижний треугольник квадратной матрицы является "зеркальным отражением" верхнего треугольника.

Характеристика поля - пусть P-поле. Если существует такое целое положительное n, что для каждого выполняется равенство n·r=0, то наименьшее из таких чисел n называется характеристикой поля P. Обозначение - char P.

Кососимметричная матрица- квадратная матрица А над полем P характеристики такая, что, где -- транспонированная матрица.

Линейная независимость системы векторов: Система векторов называется линейно независимой, если существует только тривиальная линейная комбинация данных векторов равная нулевому вектору.

Делись добром ;)