Теоретические основы метода сеток. Построение конечно-разностной схемы. Погрешность аппроксимации, устойчивость. Основная теорема метода сеток

реферат

2.1 Теоретические основы метода сеток для решения задачи Коши

дифференциальный уравнение формула схема

Основная идея метода такова. В области определения дифференциальной задачи выбирается конечное множество точек (узлов), называемое сеткой. Функции и производные в каждом узле приближенно заменяются (аппроксимируются) некоторыми линейными комбинациями значений соответствующих функций, входящих в уравнения и краевые условия, в узлах сетки. В результате этих замен нелинейная дифференциальная задача ЕК сводится к системе нелинейных алгебраических уравнений относительно приближенных значений искомых функций в узлах. Такую систему принято называть разностной задачей, или разностной схемой. Несмотря на нелинейность и большое, как правило, число неизвестных, разностная задача более предпочтительна для решения, чем исходная дифференциальная, так как допускает применение вычислительной техники. Найденное на ЭВМ решение разностной задачи (разностное решение) принимается за приближенное решение исходной задачи в узлах сетки. Оно имеет вид числовой таблицы, размер которой пропорционален количеству узлов.

Таким образом, процедура численного решения задач ЕК состоит из трех основных этапов.

1) Сначала на выбранной сетке производится аппроксимация дифференциальных уравнений и краевых условий, в результате которой строится разностная схема -- дискретный аналог исходной задачи.

2) Затем выбирается метод решения полученной нелинейной разностной задачи и конструирование вычислительного алгоритма завершается.

3) Заключительный этап -- программная реализация этого алгоритма на ЭВМ.

Суть метода сеток

1) в области интегрирования выбирается упорядоченная система точек называемая сеткой. Точки называют узлами, а - шагом сетки. Если , сетка называется равномерной. Для упрощения в дальнейшем будим считать сетку равномерной;

2) решение ищется в виде таблицы значений в узлах выбранной сетки для чего дифференциальное уравнение заменяется системой алгебраических уравнений, связывающих между собой значения искомой функции в соседних узлах. Такая система называется конечно-разностной схемой.

Имеется несколько распространенных способов получения конечно-разностных схем. Приведем здесь один из самых универсальных - интегро-интерполяционный метод.

Согласно этому способу для получения конечно-разностной схемы проинтегрируем уравнение (3) на каждом интервале для k=0, ..., n-1 и разделим на длину этого интервала:

. (4)

Интеграл в правой части (4) аппроксимируем одной из квадратурных формул (см. подразд. 4.3), после чего получаем систему уравнений относительно приближенных неизвестных значений искомой функции, которые в отличие от точных обозначим

. (5)

Здесь xj - точки внутри интервала, используемые для получения квадратурной формулы (см. подразд. 4.3).

Структура конечно-разностной схемы для задачи Коши (5) такова, что она устанавливает закон рекуррентной последовательности для искомого решения . Поэтому используя начальное условие задачи (2) и задавая , затем по рекуррентным формулам последовательно находят все

Делись добром ;)