Теория остатков

дипломная работа

2.2 Кольцо частных

В коммутативной алгебре кольцом частных S-1R кольца R (коммутативного с единицей) по мультипликативной системе называется пространство дробей с числителями из R и знаменателями из S с арифметическими операциями и отождествлениями, обычными для дробей.

Мультипликативной системой в кольце R называется подмножество S в R, содержащее 1, не содержащее нуля и замкнутое по умножению (в кольце R). Для мультипликативной системы S множество образует идеал в кольце R. В случае, когда множество S не содержит делителей нуля кольца R, идеал IS = (0) и система S называется регулярной. Если R - целостное кольцо, в ней всякая мультипликативная система регулярна.

Элементами кольца частных кольца R по мультипликативной системе S являются формальные дроби вида r/s, где r - произвольный элемент R, а s - элемент множества S. Две дроби r1 / s1 и r2 / s2 считаются эквивалентными (представляют один и тот же элемент кольца частных), если . Операции сложения и умножения определяются как обычно:

Проверяется, что если в сумме или произведении дроби заменить на эвивалентные, новый результат будет выражаться дробью, эквивалентной прежней. С такими операциями множество S ? 1R приобретает структуру коммутативного кольца с единицей. Нулём в нём служит дробь 0/1, единицей - дробь 1/1.

Свойства

· Кольцо частных имеет каноническую структуру алгебры над кольцом R, так как вместе с кольцом S-1R сразу определён и канонический гомоморфизм кольца R в S-1R (каждому элементу r из R соответствует дробь r/1). Ядром этого гомоморфизма является идеал IS. В случае, если система S регулярна (не содержит делителей нуля), этот гомоморфизм инъективен, и кольцо R, таким образом, вложено в своё кольцо частных по системе S. При этом дробь r/s является единственным решением уравнения sx = r.

· Если оба элемента r и s принадлежат S, тогда в кольце S-1R содержатся дроби r/s и s/r. Их произведение равно 1, следовательно, они обратимы. Обратно: каждый обратимый элемент кольца S-1R имеет вид er/s, где r и s принадлежат S, а e - обратимый элемент кольца R.

· Если кольцо R не имеет (собственных) делителей нуля (т.е. это целостное кольцо), множество всех ненулевых элементов образует мультипликативную систему S. Соответствующее кольцо частных будет полем, которое называется полем частных целостного кольца. Отсюда следует, что каждое целостное кольцо вложено в некоторое поле, а именно - в своё поле частных.

· Если R - евклидово кольцо, то всякое кольцо, промежуточное между R и его полем частных, является кольцом частных кольца R по некоторой мультипликативной системе S.

· Если система S состоит из одних только обратимых элементов кольца R, канонический гомоморфизм кольца R в S-1R превращается в изоморфизм, так как каждая дробь r/s оказывается сократимой в кольце R.

· Если кольцо R является подкольцом кольца R, то множество всех элементов из R, обратимых в кольце R, образует регулярную мультипликативную систему S в кольце R. Тогда каждой дроби r/s однозначно соответствует некоторый элемент кольца R. Множество всех таких элементов кольца R образует кольцо частных кольца R в кольце R.

Примеры

· Полем частных кольца целых чисел является поле рациональных чисел .

· Степени числа 10 в образуют мультипликативную систему. Кольцом частных по ней будет кольцо конечных десятичных дробей.

· Полем частных кольца многочленов k[X1,X2,...,Xn] над полем k будет поле рациональных функций k(X1,X2,...,Xn).

· Пусть -- простой идеал в R. Тогда дополнение к нему - мультипликативная система. Кольцо частных по ней называется локализацией кольца R по простому идеалу .

· Чётные числа в образуют простой идеал. Локализацией кольца по нему будет кольцо рациональных дробей, у которых в несократимом виде знаменатель -- нечётное число.

Делись добром ;)