logo
Теорії інтеграла Стільєса

3.2 Застосування у квантовій механіці

Апарат стільєсовського інтегрування пристосований для однакового опису дискретних і безперервних явищ. Ця обставина виявилася вирішальної й при введенні його в математичний арсенал квантової механіки.

Якщо в механіку раніше користувалися в основному класичним математичним аналізом - апаратом, пристосованим для опису певного класу безперервних явищ, а в тих випадках, коли потрібно було описати дискретні явища, прибігали до теорії рядів, кінцевих або нескінченних, то у квантовій механіці такі прийоми виявилися недостатніми. Безперервні й дискретні аспекти переплелися в ній настільки тісно, що ідея їхнього однакового опису напрошувалася сама собою.

Ідея стільєсовського інтегрування могла виявитися корисної із самого початку. Але в момент зародження квантової механіки і якийсь час через інтегрування по Стільєсу було ще недостатньо розроблене, а головне - занадто мало відомо, щоб лягти в основу квантової механіки. І Дирак повернув напрямок її розвитку в іншому напрямку.

Дирак як вихідна позиція тож ставить проблему однакового опису дискретних і безперервних явищ. При цьому за основне поняття він бере поняття безперервності, а дискретне описує в термінах останнього. Проти такого підходу відразу повстав И. Нейман, запропонувавши замінити узагальнені функції інтегралами Стільєса. Більшість фізиків не прийняло концепції Неймана, проте він продовжував відстоювати й розвивати свою точку зору, докладно виклавши свої міркування у своїй монографії. І хоча його концепція була прийнята не відразу, проте у квантовій механіці інтеграл Стільєса знайшов своє застосування.

Інтеграл Стільєса й лінійні функціонали.

Поняття функціонала зявилося предметом численних досліджень, що сходять ще до Ейлеру. Серед цих досліджень важливе місце зайняли вишукування по аналітичному зображенню функціоналів.

У явній формі поняття функціонала сформулював Вольтера в 1887 році. Він же дав і перше аналітичне вираження для деякого класу функціоналів у вигляді вираження, аналогічного ряду Тейлора із залученням поняття похідній функціонала. У теорії функцій найпоширенішим способом зображення функцій є вираження їхніми рядами того або іншого типу. За аналогією почалися спроби подання функціоналів у вигляді рядів по функціоналах

,

де - деякі константи, що залежать від природи функціонала, що розкладається в ряд , а - певна послідовність фіксованих функціоналів. Першим таким розкладанням було розкладання, запропоноване Пинкерле й Амальді в 1901 р. Воно мало вигляд:

,

де з - деяке фіксоване число проміжку , на якому задане розглянута множина функцій .

Крім них запропонували загальні вираження лінійних функціоналів Фреше й Адамар, але всі ці способи придатні тільки для відносно вузьких класів безперервних функцій. Тому пошуки нових аналітичних виражень для функціоналів тривали.

Вирішальної в цьому напрямку був результат Рисса. В 1909 р. Він довів, що всякий лінійний функціонал , певний у просторі безперервних функцій , заданих на , відстань між якими виражається інтегралом Стільєса