Теорія ймовірності та її застосування в економіці

контрольная работа

Завдання 5

Побудувати графік функції щільності розподілу неперервної випадкової величини Х, яка має нормальний закон розподілу з математичним сподіванням М (Х) =а і проходить через задані точки.

a=5

x

1

2

4

5

f (x)

0,033

0,081

0,081

0,033

a=2

x

0,5

1

3

3,5

f (x)

0,13

0,24

0,24

0,13

Розвязання.

а) М (Х) =5.

Нормальний закон розподілу описується формулою:

Знайдемо середньоквадратичне відхилення.

Дисперсія визначається як:

,

де М (Х) - математичне сподівання.

Математичне сподівання обчислюється за формулою:

Допоміжні розрахунки представлені в таблиці 5.

Таблиця 5

Допоміжні розрахунки

Сума

x

1

2

4

5

12,00

f (x)

0,033

0,081

0,081

0,033

0,228

16,000

9,000

1,000

0,000

26,000

0,528

0,729

0,081

0,000

5,928

Отже, D (X) = 5,928

Підставивши значення у вираз для ймовірності, отримаємо:

б) М (Х) =2.

Допоміжні розрахунки представлені в таблиці 6.

Таблиця 6

Допоміжні розрахунки

Сума

x

0,5

1

3

3,5

8,00

f (x)

0,13

0,24

0,24

0,13

0,74

2,25

1

1

2,25

6,50

0,29

0,24

0,24

0,29

1,07

Отже, D (X) = 1,07.

Підставивши значення у вираз для ймовірності, отримаємо:

Делись добром ;)