Фрактальные свойства социальных процессов

курсовая работа

2.1 Геометрические фракталы

Фракталы этого класса самые наглядные. В двухмерном случае их получают с помощью ломаной (или поверхности в трехмерном случае), называемой генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор в соответствующем масштабе. В результате бесконечного повторения этой процедуры получается геометрический фрактал.

Геометрические фракталы были открыты в начале ХХ века. В этот период математики искали такие кривые, которые ни в одной точке не имеют касательной. Это означало, что кривая резко меняет свое направление, и притом с колоссально большой скоростью (производная равна бесконечности). Поиски данных кривых были вызваны не просто праздным интересом математиков. Дело в том, что в начале ХХ века очень бурно развивалась квантовая механика. Исследователь М.Броун зарисовал траекторию движения взвешенных частиц в воде и объяснил это явление так: беспорядочно движущиеся атомы жидкости ударяются о взвешенные частицы и тем самым приводят их в движение. После такого объяснения броуновского движения перед учеными встала задача найти такую кривую, которая бы наилучшим образом аппроксимировала движение броуновских частиц. Для этого кривая должна была не иметь касательной ни в одной точке. Математик Кох предложил одну такую кривую (прил. 1).

Триадная кривая Коха обладает рядом свойств, отличающих ее от ранее известных прямых. Во-первых, эта кривая не имеет длины, т.е. с числом поколений ее длина стремится к бесконечности. Во-вторых, к этой кривой невозможно построить касательную - каждая ее точка является точкой перегиба, в которой производная не существует, - эта кривая не гладкая.

Длина и гладкость - фундаментальные свойства кривых, которые изучаются как евклидовой геометрией, так и геометрией Лобачевского, Римана. К триадной кривой Коха традиционные методы геометрического анализа оказались неприменимы. Именно с этого времени ученые начали сомневаться в универсальности традиционной геометрии.

Еще один пример простого самоподобного фрактала - ковер Серпинского, придуманный польским математиком Вацлавом Серпинским в 1915 году. В способе построения мы начинаем с некоторой области и последовательно выбрасываем внутренние подобласти (прил.2). Ковер Серпинского может быть построен как для равностороннего треугольника, так и для квадрата. В данной курсовой работе представлено еще несколько геометрических фракталов: Дракон Хартера-Хатвея (прил. 3), Дерево (прил. 4), Квадрат Госпера (прил. 5).

Делись добром ;)