Алгебра октав

дипломная работа

1.2 Категоричность системы аксиом алгебры октав

Теорема 2. Система аксиом алгебры октав категорична.

Пусть (U, +, ., e) и (U1, ,, e1 ) - две модели алгебры октав и e2 = -1, e21 = ?1.

Рассмотрим отображение Ф : U > U такое, что

Ф (u+ve) = uve1, u,v К.

Покажем, что Ф - гомоморфное отображение первой модели на вторую модель.

Пусть w1 = u1+v1e и w2 = u2+v2e. Тогда:

Ф(w1+ w2) = Ф((u1+v1e) + (u2+v2e)) = Ф((u1+u2)+(v1+v2)e) = (u1+u2)(v1+v2)e1 = (u1v1e1 ) (u2v2e1) = Ф(u1+v1e) Ф(u2+v2e) = Ф(w1)Ф(w2);

Ф(w1 w2) = Ф((u1+v1e) (u2+v2e)) = Ф((u1u2 - 2v1)+(v2u1 + v1u2)e) = (u1u2 - 2v1) (v2u1 + v1 u2) e) =(u1u2 ? 2v1)(v2u1 v1u2)e) =(u1v1e1)( u2v2e1) = Ф(u1+v1e) Ф(u2+v2e) = Ф(w1) Ф(w2);

Ф(-w) = Ф (-(u+ve)) = Ф (-u -ve) = ?u?ve1 = ?(uve1) = ?Ф(u+ve)= ?Ф(w);

Ф(w-1)=Ф((u+ve)-1)=Ф(?e)= (? e) = ? e = (uve1)-1 = (Ф(u+ve)?1) = (Ф(w)) ?1.

Следовательно, отображение Ф есть гомоморфное отображение алгебры в (U1, ,, e1 ).

Покажем, что отображение Ф инъективно:

Ф(w1)=Ф(w2) Ф(u1+v1e) = Ф(u2+v2e) u1v1e1 = u2v2e1 u1=u2v1=v2 u1+v1e= u2+v2e w1= w2.

Сюръективность отображения Ф очевидна, так как

(qU1) (u,vK)p= uve1 (u+ve = wU) Ф(w) = p.

Итак, отображение Ф есть изоморфизм алгебры на алгебру (U1,,,e1) и, следовательно, система аксиом алгебры октав категорична ввиду изоморфности произвольных ее моделей.

Делись добром ;)