Элементарное изложение отдельных фрагментов теории подгрупповых функторов

дипломная работа

3. Определения и основные примеры подгрупповых функторов

Пусть некоторый класс групп. Составим с каждой группой некоторую систему ее подгрупп . Будем говорить, что - подгрупповой -функтор или подгрупповой функтор на , если выполняются следующие условия: 1) для всех ;

2) для любого эпиморфизма , где А, и для любых групп и имеет место и

Подгрупповой -функтор называется:

1) замкнутым, если для любых двух групп и имеет место ;

2) тривиальным, если для любой группы имеет место

;

3) единичным, если для любой группы система состоит из всех подгрупп группы G.

Тривиальный подгрупповой -функтор обозначается символом , а единичный - символом .

Если и - подгрупповой -функтор, то - такой подгрупповой -функтор, что для всех . Такой функтор называется ограничением функтора на классе .

Рассмотрим несколько примеров подгрупповых функторов. В случае, когда - класс всех групп, подгрупповые -функторы мы будем называть просто подгрупповыми функторами.

Пример 1. Пусть для любой группы ,

Понятно, что - замкнутый подгрупповой функтор. Для обозначения такого подгруппового функтора мы применяем запись .

Пример 2. Пусть - совокупность всех нормальных подгрупп группы для каждой группы . Такой функтор в общем случае замкнутым не является.

Пример 3. Пусть - произвольное натуральное число. Для каждой группы через обозначим совокупность всех таких подгрупп , для которых . Понятно, что - подгрупповой -функтор. Для обозначения такого функтора мы будем применять запись .

Пример 4. Пусть - произвольное кардинальное число. И пусть для любой группы .

Понятно, что такой подгрупповой функтор в общем случае не является замкнутым. Для обозначения такого функтора мы применяем запись .

Если - подгруппа группы , то символом обозначается мощность множества .

Пример 5. Пусть - простое число и пусть для любой группы система в нет такой подгруппы , что , - натуральное число, взаимнопростое с .

Покажем, что - подгрупповой функтор.

Действительно, пусть и . Предположим, что

где - натуральное число. Тогда - натуральное число и

Следовательно, , и поэтому . Это означает, что . Аналогично, мы видим, что если

то . Таким образом, - подгрупповой функтор. Для обозначения такого подгруппового функтора мы используем запись . Заметим, что если - некоторый класс конечных групп и , то - замкнутый подгрупповой функтор.

Пример 6. Пусть . И пусть для каждой группы множество совпадает с совокупностью всех тех подгрупп из , индексы которых не делятся на числа из . Понятно, что - замкнутый подгрупповой функтор. Для обозначения такого функтора мы будем применять запись .

Напомним, что подгруппа группы называется абнормальной в , если всегда из следует, что .

Пример 7. Пусть для любой группы множество совпадает с совокупностью всех абнормальных подгрупп группы . Легко видеть, что - незамкнутый подгрупповой функтор. Для обозначения такого функтора мы будем применять запись .

Пример 8. Пусть - произвольный класс групп. Подгруппа группы называется - абнормальной в , если выполняется одно из следующих двух условий:

1) ;

2) и для любых двух подгрупп и из , где и - максимальная подгруппа в имеет место .

Легко видеть, если группа разрешима, то ее подгруппа абнормальна в тогда и только тогда, когда она -абнормальна в .

Сопоставляя каждой группе множество всех ее -абнормальных подгрупп , получаем подгрупповой функтор, для которого мы будем применять запись .

Пример 9. Подгруппа группы называется -субнормальной в , если выполняется одно из следующих двух условий:

1) ;

2) и в имеется такая цепь подгрупп где - максимальная в подгруппа, содержащая , .

Пусть - некоторая непустая формация и для каждой группы система состоит из всех -субнормальных в подгрупп.

Покажем, что - подгрупповой функтор. Пусть -субнормальна в . И пусть и - такие члены цепи (1), что , где - нормальная в подгруппа.

Покажем, что - максимальная подгруппа в . Допустим, что для некоторой подгруппы . Тогда поскольку максимальна в , то либо , либо .

Пусть имеет место первое. Тогда поскольку , то . Противоречие. Значит, , т.е. . Поэтому . Противоречие. Итак, ряд таков, что в нём для любого имеет место одно из двух условий:

1) ;

2) - максимальная подгруппа в . He теряя общности, мы можем считать, что все члены ряда (2) различны. Заметим, что поскольку то

Итак, - -субнормальная подгруппа в . Понятно также, что если - -субнормальная подгруппа в , то - -субнормальная подгруппа в . Таким образом, - подгрупповой функтор. Для обозначения такого функтора мы будем применять запись .

Класс групп называется гомоморфом, если он содержит все гомоморфные образы всех своих групп. Гомоморф конечных групп называется формацией, если каждая конечная группа обладает наименьшей по включению нормальной подгруппой (обозначаемой символом ) со свойством .

Лемма 3.1 Пусть - формация, . Тогда

Доказательство. Пусть . Тогда

Отсюда следует, что . С другой стороны, поскольку - гомоморф, то

Откуда получаем . Из и следует равенство .

Лемма доказана.

Пример 10. Пусть - некоторый класс конечных групп и - формация. Пусть для любой группы

Покажем, что - подгрупповой - функтор.

Действительно, пусть и . Тогда , и поэтому, согласно лемме 3.1, мы имеем

Следовательно, . Аналогично, если , то . Следовательно, - подгрупповой -функтор. Для обозначения такого функтора мы применяем запись .

Пример 11. Для каждой группы через обозначим совокупность всех абнормальных максимальных подгрупп из . Понятно, что - подгрупповой функтор. Для обозначения такого функтора мы будем применять запись .

Делись добром ;)