logo
Элементы тензороного исчисления

§ 4. Скалярное произведение и метрический тензор

Ковекторы, линейные операторы и билинейные формы, те, что мы рассматривали выше, все это были искусственно построенные тензоры. Однако, есть некоторое количество тензоров естественного происхождения. Давайте вспомним, что мы живем в метрическом мире. Мы можем измерять расстояния между точками (следовательно, мы можем измерять длины векторов) и измерять углы между двумя направлениями в пространстве. Поэтому для любых двух векторов x и y мы можем определить их скалярное произведение:

(x,y) = |x||y| cos(ц), (4.1)

где ц - угол между векторами x и y. Это естественное скалярное произведение, порожденное нашей способностью измерять длины или, вернее сказать, тем, что понятие длины дано нам в ощущениях в том мире, где мы живем.

Вспомним следующие свойства естественного скалярного произведения (4.1):

(1) (x+y, z) = (x, z)+(y, z);

(2) (бx, y) = б(x, y);

(3) (x, y+z) = (x, y)+(x, z);

(4) (x, бy) = б(x, y);

(5) (x, y) = (y, x);

(6) (x, x)?0 и (x, x) = 0 влечет x = 0.

Обратите внимание, что первые четыре свойства скалярного произведения

(4.1) очень похожи на свойства квадратичной формы. Это не случайное совпадение.

Давайте рассмотрим два произвольных вектора x и y вместе с их разложениями в некотором базисе . Это означает, что мы имеем следующие выражения для них:

(4.2)

Подставим (4.2) в формулу (4.1) и, используя четыре свойства(1)-(4) из шести упомянутых в упражнении, выведем следующую формулу для скалярного произведения векторов x и y:

(4.3)

Обозначим и запишите (4.3) в виде

(4.4)

Рассмотрим другой базис , обозначим и посредством формул преобразования

и

докажем, что матрицы и являются компонентами геометрического объекта, подчиняющимися преобразованиям

и

при замене базиса. Таким образом мы докажем, что эта матрица Грама

(4.5)

задает тензор типа (0,2). Это очень важный тензор; его называют метрическим тензором. Оно описывает не только скалярное произведения в форме (4.4), но и всю геометрию нашего пространства. Свидетельства этого факта приводятся ниже.

Матрица (4.5) симметрична из-за свойства (5). Теперь, сравнивая формулу (4.4) с формулой

и помня о тензорной природе матрицы (4.5), мы приходим к выводу, что скалярное произведение - это симметричная билинейная форма:

(x, y) = g(x,y). (4.6)

Квадратичная форма, соответствующая (4.6), очень проста: f(x) = g(x,x) =. Обратная матрица для (4.5) обозначается тем же самым символом g, но она имеет два верхних индекса: . Это определяет тензор типа (2,0). Такой тензор называется дуальным метрическим тензором.