logo
Элементы тензороного исчисления

§8. Примеры вычислений

Пример 1 (Динамика частицы)

В качестве простого приложения тензорного исчисления чуть переформулируем уравнения классической динамики материальной точки.

Второй закон Ньютона в компонентах записывается как

(8.1)

Откуда сразу видна его ковариантность по отношению к преобразованиям из группы О (3). Если силовое поле потенциально, то

(8.2)

Умножая обе части (8.1) на и свертывая по индексам, получим

т.е.

(8.3)

Вводя кинетическую энергию частицу и элементарную работу силы , придем к теореме живых сил.

(8.4)

Инвариантной относительно ортогональных преобразований. Для потенциального стационарного поля сил из (8.4) и (8.2) имеем

Откуда следует закон сохранения энергии:

(8.5)

умножая уравнение (8.1) с индексом k на координату , умножая затем то же уравнение с индексом j на и производя вычитание, получим

Или, после вынесения производной по времени,

(8.6)

Чтобы выяснить смысл этого результата, свернем обе части (8.6) с символом :

Вспоминая определение векторного произведения, придем к теореме об изменении момента импульса частицы:

(8.7)

Пример 2 (Момент инерции)

Момент количества движения L твердого тела, вращающегося относительно фиксированной оси, пропорционален угловой скорости щ, и коэффициент пропорциональности I мы назвали моментом инерции:

Момент инерции тела произвольной формы зависит от его ориентации относительно оси вращения. Моменты инерции прямоугольного бруска, например, относительно каждой из трех ортогональных осей будут разными. Но угловая скорость щ и момент количества движения L -- оба векторы. Для вращения относительно одной из осей симметрии они параллельны. Но если моменты инерции относительно каждой из трех главных осей различны, то направления щ и L, вообще говоря, не совпадают.

(8.8)

Девять коэффициентов называют тензором инерции. Кинетическая энергия T для любого момента количества движения должна быть некоторой квадратичной формой компонент , и :

(8.9)

Мы можем воспользоваться этим выражением для определения эллипсоида инерции. Кроме того, снова можно воспользоваться энергетическими соображениями и показать, что этот тензор симметричен, т. е. =.

Тензор инерции твердого тела можно написать, если известна форма тела. Нам нужно только выписать полную кинетическую энергию всех частиц тела. Частица с массой m и скоростью v обладает кинетической энергией , а полная кинетическая энергия равна просто сумме

по всем частицам тела. Но скорость v каждой частицы связана с угловой скоростью щ твердого тела. Предположим, что тело вращается относительно центра масс, который мы будем считать покоящимся. Если при этом r -- положение частицы относительно центра масс, то ее скорость v задается выражением . Поэтому полная кинетическая энергия равна

(8.10)

Единственное, что нужно теперь сделать,-- это переписать через компоненты ,,и координаты х, у, z, а затем сравнить результат с уравнением (8.9); приравнивая коэффициенты, найдем . Проделывая всю эту алгебру, мы пишем:

Умножая это уравнение на , суммируя по всем частицам и сравнивая с уравнением (8.9), мы видим, что , например, равно

Это и есть та формула для момента инерции тела относительно оси х. Ну а поскольку , то эту же формулу можно написать в виде

Выписав остальные члены тензора инерции, получим

(8.11)

Его можно записать в «тензорных обозначениях»:

(8.12)

где через обозначены компоненты (х, у, z) вектора положения частицы, а ? означает суммирование по всем частицам. Таким образом, момент инерции есть тензор второго ранга, элементы которого определяются свойствами тела и который связывает момент количества движения L с угловой скоростью щ:

(8.13)

Для любого тела независимо от его формы можно найти эллипсоид энергии, а следовательно, и три главные оси. Относительно этих осей тензор будет диагональным, так что для любого объекта всегда есть три ортогональные оси, для которых момент количества движения и угловая скорость параллельны друг другу. Они называются главными осями инерции.

Пример 3 (Тензор напряжений)

Рассмотрим тело из какого-то упругого материала, например брусок из желе. Если мы разрежем этот брусок, то материал на каждой стороне разреза будет, вообще говоря, претерпевать перемещение под действием внутренних сил. До того как был сделан разрез, между двумя этими частями должны были действовать силы, которые удерживали обе части в едином куске; мы можем выразить напряжение через эти силы. Представим, что мы смотрим на воображаемую плоскость, перпендикулярную оси х, подобную плоскости у на (рис.1), и интересуемся силами, действующими на маленькой площадке ДyДz, расположенной в этой плоскости. Материал, находящийся слева от площадки, действует на материал с правой стороны с силой (рис. 1, б).

рис.1

Есть, конечно, и обратная реакция, т.е. на материал слева от поверхности действует сила -. Если площадка достаточно мала, то мы ожидаем, что сила пропорциональна площади ДyДz.

Мы уже знакомы с одним видом напряжений -- статическим давлением жидкости. Там сила была равна давлению, умноженному на площадь, и направлена под прямым углом к элементу поверхности. Для твердого тела, а также движущейся вязкой жидкости сила не обязательно перпендикулярна поверхности: помимо давления (положительного или отрицательного), появляется еще и сдвигающая сила. (Под «сдвигающей» силой мы подразумеваем тангенциальные компоненты сил, действующих на поверхности.) Для этого нужно учитывать все три компоненты силы. Заметим еще, что если разрез мы сделаем по плоскости с какой-то другой ориентацией, то действующие на ней силы тоже будут другими. Полное описание внутренних напряжений требует применения тензоров.

рис.2

Определим тензор напряжений следующим образом. Вообразим сначала разрез, перпендикулярный оси х, и разложите силу действующую на разрезе, на ее компоненты: , , (рис.2). Отношение этих сил к площади ДyДz мы назовем. Например:

Первый индекс у относится к направлению компоненты силы, а второй х - к направлению нормали к плоскости. Если угодно, площадь ДyДz можно записать как , имея в виду элемент площади, перпендикулярный оси х, т. е.

А теперь представьте себе разрез, перпендикулярный оси у. Пусть на маленькую площадку ДxДz действует сила . Разлагая снова эту силу на три компоненты, мы определяем три компоненты напряжения как силы, действующие на единичную площадь в этих трех направлениях. Наконец, проведем воображаемый разрез, перпендикулярный оси z, и определим три компоненты . Таким образом, получается девять чисел:

(8.14)

Покажем, что этих девяти величин достаточно, чтобы полностью описать внутреннее напряженное состояние, и что - действительно тензор. Предположим, что мы хотим знать силу, действующую на поверхность, наклоненную под некоторым произвольным углом. Можно ли найти ее, исходя из ? Можно, и это делается следующим образом. Вообразим маленькую призму, одна грань N которой наклонна, а другие -- параллельны осям координат. Если окажется, что грань N параллельна оси z, то получается картина, изображенная на рис.3. (Это, конечно, частный случай, но он достаточно хорошо иллюстрирует общий метод.) Дальше, напряжения, действующие на эту призмочку, должны быть такими, чтобы она находилась в равновесии (по крайней мере, в пределе бесконечно малого размера), так что действующая на нее полная сила должна быть равна нулю. Силы, действующие на грани, параллельные осям координат, известны нам непосредственно из тензора . А их векторная сумма должна равняться силе, действующей на грань N, так что эту силу можно выразить через .

рис.3

Наше допущение, что поверхностные силы, действующие на малый объем, находятся в равновесии, предполагает отсутствие объемных сил, подобных силе тяжести или псевдосилам, которые тоже могут присутствовать, если наша система координат не инерциальна. Заметим, однако, что такие объемные силы будут пропорциональны объему призмочки и поэтому пропорциональны Дx, Дy, Дz, тогда как поверхностные силы пропорциональны ДxДy, ДyДz и т. п. Итак, если размер призмочки взять достаточно малым, то объемные силы будут пренебрежимо малы по сравнению с поверхностными.

А теперь сложим силы, действующие на нашу призмочку. Возьмемся сначала за x-компоненту, которая состоит из пяти частей, по одной от каждой грани. Но если Дz достаточно мало, то силы от треугольных граней (перпендикулярные оси z) будут равны друг другу и противоположны по направлению, поэтому о них можно забыть. На основание призмы действует x-компонента силы, равная

а x-компонента силы, действующей на вертикальную прямоугольную грань, равна

Сумма этих двух сил должна быть равна x-компоненте силы, действующей извне на грань N. Обозначим через n единичный вектор нормали к грани N, а через - действующую на нее силу, тогда получим

Составляющая напряжения по оси х (), действующего в этой плоскости, равна силе , деленной на площадь, т. е. , или

Но, как видно из рис.3, отношение -- это косинус угла и между n и осью у и может быть записан как , т. е. y-компонента вектора n. Аналогично, равно sinи=. Поэтому мы можем написать

Если теперь обобщить это на произвольный элемент поверхности, то мы получим

или в еще более общей форме:

(8.15)

Так что мы действительно можем выразить силу, действующую на произвольную площадь, через элементы и полностью описать внутреннее напряжение.

Уравнение (8.15) говорит, что тензор связывает силу с единичным вектором n. Но поскольку n и - векторы, то компоненты при изменении осей координат должны преобразовываться как тензор. Так что действительно тензор.

Можно также доказать, что - симметричный тензор. Для этого нужно обратить внимание на силы, действующие на маленький кубик в материале. Возьмем кубик, грани которого параллельны осям координат, и посмотрим на его разрез (рис.4). Если допустить, что ребра куба равны единице, то х- и y-компоненты сил на гранях, перпендикулярных к осям х и у, должны быть такими, как показано на рисунке. Если взять достаточно маленький кубик, можно надеяться, что напряжение на его противоположных гранях будет отличаться ненамного, а поэтому компоненты сил должны быть равны и противоположны, как это показано на рисунке. Заметим теперь, что на кубик не должен действовать никакой момент сил, иначе кубик начал бы вращаться. Но полный момент относительно центра равен произведению () на единичную длину ребра куба, а поскольку полный момент равен нулю, то должно быть равно , и тензор напряжений, таким образом, оказывается симметричным.

рис.4

Благодаря этой симметрии тензора его можно тоже описывать эллипсоидом с тремя главными осями. Напряжение имеет особенно простой вид на площадках, нормальных к этим осям: оно соответствует чистому сжатию или растяжению в направлении главных осей. Вдоль этих площадок нет никаких сдвиговых сил, причем такие оси, для которых отсутствуют сдвиговые силы, можно выбрать для любого напряжения. Если эллипсоид превращается в сферу, то в любом направлении действуют только нормальные силы. Это соответствует гидростатическому давлению (положительному или отрицательному). Таким образом, для гидростатического давления тензор диагоналей, причем все три компоненты его равны друг другу (фактически они просто равны давлению р). В этом случае мы можем написать

(8.16)

Вообще говоря, тензор напряжений в куске твердого тела, а также его эллипсоид изменяются от точки к точке, поэтому для описания всего куска мы должны задать каждую компоненту как функцию положения. Тензор напряжений, таким образом, является полем. Мы уже имели примеры скалярных полей, подобных температуре Т(х, у, z), и векторных полей, подобных Е(х, у, z), которые в каждой точке задавались тремя числами. А теперь перед нами пример тензорного поля, задаваемого в каждой точке пространства девятью числами, из которых для симметричного тензора реально остается только шесть. Полное описание внутренних сил в произвольном твердом теле требует знания шести функций координат х, у и z.