1. Параллельные прямые линии.
Параллельными называются две прямые, которые лежат в одной плоскости и не имеют общих точек.
Проекции параллельных прямых на любую плоскость (не перпендикулярную данным прямым) - параллельны.
Это свойство параллельного проецирования остается справедливым и для ортогональных проекций, то есть если ABCD тоA1B1C1D1; A2B2C2D2; A3B3C3D3 (рис.3.19). В общем случае справедливо и обратное утверждение.
| ||
а) модель |
| б) эпюр |
Рисунок 3.19. Параллельные прямые
|
Особый случай представляют собой прямые, параллельные одной из плоскостей проекций. Например, фронтальные и горизонтальные проекции профильных прямых параллельны, но для оценки их взаимного положения необходимо сделать проекцию на профильную плоскость проекций (рис. 3.20). В рассмотренном случае проекции отрезков на плоскость П3 пересекаются, следовательно, они не параллельны.
Решение этого вопроса можно получить сравнением двух соотношений если:
А2В2/ А1В1= С2Д2/ С1 Д1 АВ//СД
А2В2/ А1В1 С2Д2/ С1Д1 АВ#СД
| ||
а) модель |
| б) эпюр |
Рисунок 3.20. Прямые параллельные профильной плоскости проекций
|
- Виды проецирования.
- Лекция №3-1 Прямая линия. Способы графического задания прямой линии.
- 1.Двумя точками ( а и в ).
- 2. Двумя плоскостями ( .
- 3. Двумя проекциями.
- Лекция №3-2 Положение прямой относительно плоскостей проекций. Следы прямой.
- Лекция №3-3
- Лекция №3-3
- Лекция № 3-4
- Лекция №3-5 Взаимное положение двух прямых. Параллельные прямые. Пересекающиеся прямые. Скрещивающиеся прямые.
- 1. Параллельные прямые линии.
- 2. Пересекающиеся прямые.
- 3. Скрещивающиеся прямые
- Лекция №3-6 Проекции плоских углов.
- Многогранники