Основные числовые характеристики дискретной случайной величины
Как уже отмечалось, закон распределения дискретной случайной величины позволяет получить исчерпывающую информацию об этой величине.
На практике закон распределения изучаемой величины часто неизвестен, но даже и в тех случаях, когда он известен, для описания определенных особенностей этой величины используют ее так называемые основные числовые характеристики, из которых рассмотрим математическое ожидание, дисперсию и среднее квадратическое отклонение (стандарт).
Определение. Математическим ожиданием М(Х) (часто используется также обозначение «») дискретной случайной величины Х называется сумма произведений каждого из всех ее возможных значений на соответствующие вероятности:
, (3)
где индекс i принимает значения 1, 2, 3, ..., п.
Пример 3.Вычислить математическое ожидание дискретной случайной величины X, определяемой как количество студентов в наугад выбранной группе, используя данные табл. 2 (см. пример 2).
Решение. Подставляя данные табл. 8.3 в формулу (3), получим:
Основной смысл математического ожидания дискретной случайной величины состоит в том, что оно представляет собой среднее значение данной величины. Иными словами, если произведено некоторое количество испытаний и по результатам этих испытаний вычислено среднее арифметическое всех наблюдавшихся значений дискретной случайной величины X, то это среднее арифметическое значение приближенно равно (тем точнее, чем больше количество испытаний) математическому ожиданию данной случайной величины.
Для характеристики степени разброса возможных значений дискретной случайной величины относительно ее математического ожидания вводят понятие дисперсии дискретной случайной величины.
Определение. Дисперсией D(X) (часто используется также обозначение «2») дискретной случайной величины, называется математическое ожидание квадрата отклонения этой величины от ее математического ожидания:
, (4)
- Случайные события
- Некоторые виды событий
- Классическое определение вероятности случайного события
- Случайные величины
- Понятие дискретных и непрерывных случайных величин
- Дискретные случайные величины
- Основные числовые характеристики дискретной случайной величины
- Непрерывные случайные величины
- Основные числовые характеристики непрерывной случайной величины
- Нормальный закон распределения (закон Гаусса)
- Анализ вариабельности сердечного ритма
- Вариационная пульсометрия
- Статистические методы
- Показатели статистического анализа (временной анализ).
- Вероятностный подход
- Перечень основных показателей вариабельности сердечного ритма
- Упражнения
- Задание