6.4. Поиск контуров и путей по матрице смежности
Наиболее простым способом идентификации путей и контуров являются матричные алгоритмы структурного анализа [107]. Они строятся на основе последовательного возведения в соответствующие степени матрицы смежности (см. 1.5).
Единица в матрице смежности S говорит о наличии пути между i‑й и j-й вершинами длиной 1. Наличие 1 в (i, j)-й позиции в матрицы означает путь длиной 2 между этими вершинами, и так далее. Таким образом, существование ненулевого значения на главной диагонали означает наличие пути из данной вершины в данную вершину, длинна которого равна степени матрицы. Значение матрицы смежности в различных степенях для графа, представленного на рис. 3.1 показаны ниже:
Наличие 1 в главной диагонали указывает на то, что четыре переменные системы входят в контуры длиной 2. Это позволяет определить вершины, входящие в контуры, его длину, но не конкретный вид. Поэтому требуется уточняющий переборный алгоритм на отобранных вершинах нелинейного системного гибридного графа, определяющего конкретный вид контура известной длины. На выходе этого алгоритма формируется дополняемый список из номеров вершин, входящих в каждый контур. С учетом различной длины контуров его удобнее представлять в памяти ПЭВМ динамическим списком
.
Четвертая степень матрицы смежности содержит информацию об еще одном контуре длиной 4. Но кроме этого повторяется информация о контурах длиной 2.
Рис. 3.1. Диаграмма графа одноуровневой модели СУ
Рис. 3.2. Диаграмма графа иерархической модели СУ
Отмеченные особенности этого метода, повторение информации о контурах в матрицах более высокого порядка, кратного длине контура; трудности в обработки контуров одинаковой длины, требуют применения, в дополнению к рассматриваемому методу переборного алгоритма, уточняющего и отбрасывающего повторяющую информацию.
Наиболее существенным недостатком данного метода является его низкое быстродействие в следствие большого количества возведений матрицы смежности в соответствующие степени и большие затраты памяти ЭВМ для хранения информации.
- Введение. Основные понятия и определения Основные задачи теории систем.
- Краткая историческая справка.
- Основные понятия теории систем
- Основные понятия и определения Основное содержание первой лекции
- Понятие информации
- Открытые и закрытые системы
- Модель и цель системы
- Управление
- Информационные динамические системы
- Классификация и основные свойства единиц информации
- Системы управления
- Реляционная модель данных
- Виды информационных систем
- Классификация информационных систем
- Технические, биологические и др. Системы
- Детерминированные и стохастические системы
- Открытые и закрытые системы
- Хорошо и плохо организованные системы
- Классификация систем по сложности
- Лекция №4. Закономерности систем Целостность
- Интегративность
- Коммуникативность
- Эквифинальность
- Закон необходимого разнообразия
- Закономерность осуществимости и потенциальной эффективности систем
- Закономерность целеобразования
- Системный подход и системный анализ
- Лекция №5. Уровни представления информационных систем
- Методы и модели описания систем
- Качественные методы описания систем
- Количественные методы описания систем
- Лекция №6. Кибернетический подход к описанию систем
- 6.1. Задачи анализа топологии
- 6.2. Представление информации о топологии моделей
- 6.3. Переборные методы
- 6.4. Поиск контуров и путей по матрице смежности
- 6.5. Модифицированный алгоритм поиска контуров и путей по матрице смежности
- 6.6. Поиск контуров и путей по матрице изоморфности
- 6.6. Сравнение алгоритмов топологического анализа
- 6.7. Декомпозиция модели на топологическом ранге неопределенности
- 6.8. Сортировка модели на топологическом ранге неопределенности
- 6.9. Нахождение сильных компонент графа
- Лекция №8. Теоретико-множественное описание систем
- Предположения о характере функционирования систем
- Система, как отношение на абстрактных множествах
- Временные, алгебраические и функциональные системы
- Временные системы в терминах «вход — выход»
- 1.2. Формы представления модели
- 1.2.1. Нормальная форма Коши
- 1.2.2. Системы нелинейных дифференциальных уравнений различных порядков
- 1.2.3. Графы
- 1.2.4. Гиперграфы
- Лекция №10. Динамическое описание систем
- Детерминированная система без последствий
- Детерминированные системы без последствия с входными сигналами двух классов
- Учет специфики воздействий
- Детерминированные системы с последствием
- Стохастические системы
- Агрегатное описание систем