Дослідження двовимірної квадратичної стаціонарної системи із двома приватними інтегралами у вигляді кривих другого порядку

дипломная работа

Введення

Відомо, що в елементарних функціях і навіть у квадратурах інтегруються далеко не всі класи диференціальних рівнянь. У звязку із цим зявилася необхідність у створенні такої теорії, за допомогою якої можна було б вивчати властивості рішень диференціальних рівнянь по виду самих рівнянь. Такою теорією, поряд з аналітичної, і є якісна теорія диференціальних рівнянь.

Уперше задача якісного дослідження для найпростішого випадку системи двох диференціальних рівнянь із повною виразністю була поставлена А. Пуанкаре [7]. Пізніше дослідження А. Пуанкаре були доповнені И. Бендиксоном [3, с. 191-211] і уточнені Дж.Д. Биркгофом [4, с.175-179].

(0.1)

Однієї із задач якісної теорії диференціальних рівнянь є вивчення поводження траєкторій динамічної системи (0.1) на фазовій площині в цілому у випадку, коли P (x,y) і Q (x,y) - аналітичні функції. Інтерес до вивчення цієї системи або відповідного їй рівняння пояснюється їх безпосереднім практичним застосуванням у різних областях фізики й техніки.

(0.2)

Є багато робіт, у яких динамічні системи вивчалися в припущенні, що їхніми частками інтегралами є алгебраїчні криві. Поштовхом до більшості з них послужила робота Н.П. Еругина [6, с.659 - 670], у якій він дав спосіб побудови систем диференціальних рівнянь, що мають як свій приватний інтеграл криву заданого виду.

Знання одного приватного алгебраїчного інтеграла системи (0.1) у багатьох випадках допомагає побудувати повну якісну картину поводження інтегральних кривих у цілому. Відзначимо ряд робіт цього характеру для систем (0.1), у яких P (x,y) і Q (x,y) - поліноми другого ступеня.

Н.Н. Баутиним [1, с.181 - 196] і Н.Н. Серебряковою [8, с.160 - 166] повністю досліджений характер поводження траєкторій системи (0.1), що має два алгебраїчних інтеграли у вигляді прямих. В [10, с.732 - 735] Л.А. Черкасом таке дослідження проведене для рівняння (0.2) при наявності приватного інтеграла у вигляді кривої третього порядку. Яблонський А.И. [11, с.1752 - 1760] і Филипцов В.Ф. [9, с.469-476] вивчали квадратичні системи із припущенням, що приватним інтегралом були алгебраїчні криві четвертого порядку.

У даній роботі розглядається система

(0.3)

і проводиться якісне дослідження в цілому системи (0.3) за умови, що приватним інтегралом є крива четвертого порядку, що розпадається на дві криві другого порядку, одна й з яких парабола, друга окружність або гіпербола.

Робота складається із двох глав.

У першому розділі проводиться побудова квадратичних двовимірних стаціонарних систем із заданими інтегралами, при цьому коефіцієнти інтегралів виражаються через коефіцієнти системи, а коефіцієнти системи звязані між собою трьома співвідношеннями.

У другому розділі проводиться якісне дослідження в цілому виділених у першому розділі класів систем при фіксованих значеннях деяких параметрів.

Делись добром ;)