logo
Классификация групп с перестановочными обобщенно максимальными подгруппами

Перечень условных обозначений

В работе все рассматриваемые группы предполагаются конечными. Используются обозначения, принятые в книгах. Буквами обозначаются простые числа.

Будем различать знак включения множеств и знак строгого включения ;

и - соответственно знаки пересечения и объединения множеств;

- пустое множество;

- множество всех для которых выполняется условие ;

- множество всех натуральных чисел;

- множество всех простых чисел;

- некоторое множество простых чисел, т.е. ;

- дополнение к во множестве всех простых чисел; в частности, ;

примарное число - любое число вида ;

Пусть - группа. Тогда:

- порядок группы ;

- порядок элемента группы ;

- единичный элемент и единичная подгруппа группы ;

- множество всех простых делителей порядка группы ;

- множество всех различных простых делителей натурального числа ;

-группа - группа , для которой ;

-группа - группа , для которой ;

- подгруппа Фраттини группы , т.е. пересечение всех максимальных подгрупп группы ;

- подгруппа Фиттинга группы , т.е. произведение всех нормальных нильпотентных подгрупп группы ;

- наибольшая нормальная -нильпотентная подгруппа группы ;

- коммутант группы , т.е. подгруппа, порожденная коммутаторами всех элементов группы ;

- -ый коммутант группы ;

- наибольшая нормальная -подгруппа группы ;

- -холловская подгруппа группы ;

- силовская -подгруппа группы ;

- дополнение к силовской -подгруппе в группе , т.е. -холловская подгруппа группы ;

- группа всех автоморфизмов группы ;

- является подгруппой группы ;

- является собственной подгруппой группы ;

- является максимальной подгруппой группы ;

нетривиальная подгруппа - неединичная собственная подгруппа;

- является нормальной подгруппой группы ;

- подгруппа характеристична в группе , т.е. для любого автоморфизма ;

- индекс подгруппы в группе ;

;

- централизатор подгруппы в группе ;

- нормализатор подгруппы в группе ;

- центр группы ;

- циклическая группа порядка ;

- ядро подгруппы в группе , т.е. пересечение всех подгрупп, сопряжённых с в .

Если и - подгруппы группы , то:

- прямое произведение подгрупп и ;

- полупрямое произведение нормальной подгруппы и подгруппы ;

- и изоморфны.

Группа называется:

примарной, если ;

бипримарной, если .

Скобки применяются для обозначения подгрупп, порождённых некоторым множеством элементов или подгрупп.

- подгруппа, порожденная всеми , для которых выполняется .

, где .

Группу называют:

-замкнутой, если силовская -подгруппа группы нормальна в ;

-нильпотентной, если -холловская подгруппа группы нормальна в ;

-разрешимой, если существует нормальный ряд, факторы которого либо -группы, либо -группы;

-сверхразрешимой, если каждый ее главный фактор является либо -группой, либо циклической группой;

нильпотентной, если все ее силовские подгруппы нормальны;

метанильпотентной, если существует нормальная нильпотентная подгруппа группы такая, что нильпотентна.

разрешимой, если существует номер такой, что ;

сверхразрешимой, если она обладает главным рядом, все индексы которого являются простыми числами.

Группа Шмидта - это конечная ненильпотентная группа, все собственные группы которой нильпотентны.

Добавлением к подгруппе группы называется такая подгруппа из , что .

Минимальная нормальная подгруппа группы - неединичная нормальная подгруппа группы , не содержащая собственных неединичных нормальных подгрупп группы .

Цоколь группы - произведение всех минимальных нормальных подгрупп группы .

- цоколь группы .

Экспонента группы - это наименьшее общее кратное порядков всех ее элементов.

Цепь - это совокупность вложенных друг в друга подгрупп. Ряд подгрупп - это цепь, состоящая из конечного числа членов и проходящая через единицу.

Ряд подгрупп называется:

субнормальным, если для любого ;

нормальным, если для любого ;

главным, если является минимальной нормальной подгруппой в для всех .

Классы групп, т.е. совокупности групп, замкнутые относительно изоморфизмов, обозначаются прописными готическими буквами. Также обозначаются формации, т.е. классы групп, замкнутые относительно факторгрупп и подпрямых произведений. За некоторыми классами закреплены стандартные обозначения:

- класс всех групп;

- класс всех абелевых групп;

- класс всех нильпотентных групп;

- класс всех разрешимых групп;

- класс всех -групп;

- класс всех сверхразрешимых групп;

- класс всех абелевых групп экспоненты, делящей .

Формации - это классы конечных групп, замкнутые относительно взятия гомоморфных образов и конечных подпрямых произведений.

Пусть - некоторый класс групп и - группа, тогда:

- -корадикал группы , т.е. пересечение всех тех нормальных подгрупп из , для которых . Если - формация, то является наименьшей нормальной подгруппой группы , факторгруппа по которой принадлежит . Если - формация всех сверхразрешимых групп, то называется сверхразрешимым корадикалом группы .

Формация называется насыщенной, если всегда из следует, что и .

Класс групп называется наследственным или замкнутым относительно подгрупп, если из того, что следует, что и каждая подгруппа группы также принадлежит .

Произведение формаций и состоит из всех групп , для которых , т.е. .

Пусть - некоторая непустая формация. Максимальная подгруппа группы называется -абнормальной, если .

Подгруппы и группы называются перестановочными, если .

Пусть , -подгруппы группы и . Тогда называется:

(1) -перестановочной с , если в имеется такой элемент , что ;

(2) наследственно -перестановочной с , если в имеется такой элемент , что .

Пусть - максимальная подгруппа группы . Нормальным индексом подгруппы называют порядок главного фактора , где и , и обозначают символом .

Подгруппа группы называется -максимальной подгруппой или иначе второй максимальной подгруппой в , если в найдется такая максимальная подгруппа , в которой является максимальной подгруппой. Аналогично определяют -максимальные (третьи максимальные) подгруппы, -максимальные подгруппы и т.д.