4. Динамическое программирование
Динамическое программирование представляет собой математические аппарат, позволяющий быстро находить оптимальное решение в случаях, когда анализируемая ситуация не содержит факторов неопределенности, но имеется большое количество вариантов поведения, приносящих различные результаты, среди которых необходимо выбрать наилучший. Динамическое программирование подходит к решению некоторого класса задач путем разложения на части, небольшие и менее сложные задачи. В принципе, задачи такого рода могут быть решены путем перебора всех возможных вариантов и выбора среди них наилучшего, однако часто такой перебор весьма затруднен. В этих случаях процесс принятия оптимального решения может быть разбит на шаги (этапы) и исследован с помощью метода динамического программирования.
Решение задач методами динамического программирования проводится на основе сформулированного Р.Э.Беллманом принципа оптимальности: оптимальное поведение обладает тем свойством, что каким бы ни было первоначальное состояние системы и первоначальное решение, последующее решение должно определять оптимальное поведение относительно состояния, полученного в результате первоначального решения.
Таким образом, планирование каждого шага должно проводится с учетом общей выгоды, получаемой по завершении всего процесса, что и позволяет оптимизировать конечный результат по выбранному критерию.
Вместе с тем динамическое программирование не является универсальным методом решения. Практически каждая задача, решаемая этим методом, характеризуется своими особенностями и требует проведения поиска наиболее приемлемой совокупности методов для ее решения. Кроме того, большие объемы и трудоемкость решения многошаговых задач, имеющих множество состояний, приводят к необходимости отбора задач малой размерности либо использования сжатой информации.
Динамическое программирование применяется для решения таких задач, как: распределение дефицитных капитальных вложений между новыми направлениями их использования; разработка правил управления спросом и запасами; составление календарных планов текущего и капитального ремонтов оборудования и его замены; поиск кратчайших расстояний на транспортной сети и т.д.
Пусть процесс оптимизации разбит на n шагов. На каждом шаге необходимо определить два типа переменных - переменную состояния S и переменную управления X. Переменная S определяет, в каких состояниях может оказаться система на данном k-м шаге. В зависимости от S на этом шаге можно применить некоторые управления, которые характеризуются переменной X. Применение управления X на k-м шаге приносит некоторый результат Wk(S,Xk) и переводит систему в некоторое новое состояние S(S,Xk). Для каждого возможного состояния на k-м шаге среди всех возможных управлений выбирается оптимальное управление X*k такое, чтобы результат, который достигается за шаги с k-го по n-й, оказался оптимальным. Числовая характеристика этого результата называется функцией Беллмана Fk(S) и зависит от номера шага k и состояния системы S.
Все решения задачи разбиваются на два этапа. На первом этапе, который называют условной оптимизацией, отыскиваются функция Беллмана и оптимальные управления для всех возможных состояний на каждом шаге, начиная с последнего.
После того, как функция Беллмана и соответствующие оптимальные управления найдены для всех шагов с n-го по первый, производится второй этап решения задачи, который называется безусловной оптимизацией.
В общем виде задача динамического программирования формулируется следующим образом: требуется определить такое управление X*, переводящее систему из начального состояния S0 в конечное состояние Sn, при котором целевая функция F(S0,X*) принимает наибольшее (наименьшее) значение.
Особенности математической модели динамического программирования заключаются в следующем:
задача оптимизации формулируется как конечный многошаговый процесс управления;
целевая функция является аддитивной и равна сумме целевых функций каждого шага
;
выбор управления Xk на каждом шаге зависит только от состояния системы к этому шагу Sk-1 и не влияет на предшествующие шаги (нет обратной связи);
состояние системы Sk после каждого шага управления зависит только от предшествующего состояния системы Sk-1 и этого управляющего воздействия Xk (отсутствие последействия) и может быть записано в виде уравнения состояния:
;
на каждом шаге управление Xk зависит от конечного числа управляющих переменных, а состояние системы Sk зависит от конечного числа переменных;
оптимальное управление X* представляет собой вектор, определяемый последовательностью оптимальных пошаговых управлений:
X*=(X*1, X*2, …, X*k, …, X*n),
число которых и определяет количество шагов задачи.
Условная оптимизация. Как уже отмечалось выше, на данном этапе отыскиваются функция Беллмана и оптимальные управления для всех возможных состояний на каждом шаге, начиная с последнего в соответствии с алгоритмом обратной прогонки. На последнем n-м шаге найти оптимальное управление X*n и значение функции Беллмана Fn(S) не сложно, так как
Fn(S)=max{Wn(S,Xn)},
где максимум ищется по всем возможным значениям Xn.
Дальнейшие вычисления производятся согласно рекуррентному соотношению, связывающему функцию Беллмана на каждом шаге с этой же функцией, но вычисленной на предыдущем шаге:
Fk(S)=max{Wk(S,Xk)+Fk+1(S(S,Xk))}. (1)
Этот максимум (или минимум) определяется по всем возможным для k и S значениям переменной управления X.
Безусловная оптимизация. После того, как функция Беллмана и соответствующие оптимальные управления найдены для всех шагов с n-го по первый (на первом шаге k=1 состояние системы равно ее начальному состоянию S0), осуществляется второй этап решения задачи. Находится оптимальное управление на первом шаге X1, применение которого приведет систему в состояние S1(S,x1*), зная которое можно, пользуясь результатами условной оптимизации, найти оптимальное управление на втором шаге, и так далее до последнего n-го шага.
- Введение
- 1. Понятие математического программирования
- 2. Понятие линейного программирования. Виды задач линейного программирования
- 3. Понятие нелинейного программирования
- 4. Динамическое программирование
- Лабораторная работа №1 (Задача линейного программирования)
- Лабораторная работа № 2 (Решение задачи ЛП средствами табличного процессора Excel)
- Лабораторная работа № 3 (Решение транспортной задачи)
- Лабораторная работа №4 (решение задач нелинейного программирования)
- Лабораторная работа №5 (задача динамического программирования об оптимальном распределении инвестиций)
- Лабораторная работа №5 (задача динамического программирования о выборе оптимального пути в транспортной сети)
- Заключение
- Классификация задач математического программирования
- 1.1. Задачи математического и линейного программирования
- Общая задача математического программирование
- 1. Определение задачи математического программирования
- Классификация задач математического программирования
- 5.1 Классификация задач математического программирования
- 1.3. Классификация задач математического программирования
- Формулировка задачи математического программирования
- 21.Задачи математического программирования.