logo search
Развитие понятия "Пространство" и неевклидова геометрия

1.3 Аксиоматика Гильберта

Хотя в современном аксиоматическом изложении геометрии Евклида не всегда пользуются аксиоматикой Гильберта, приведём её, как первую полную, независимую и непротиворечивую систему аксиом.

Все двадцать аксиом системы Гильберта подразделены на пять групп.

· Группа I содержит восемь аксиом принадлежности.

· Группа II содержит четыре аксиомы порядка.

· Группа III содержит пять аксиом конгруэнтности.

· Группа IV содержит две аксиомы непрерывности.

· Группа V содержит одну аксиому параллельности.

Переходим к формулировке аксиом по группам. Одновременно будем указывать некоторые утверждения, вытекающие из формулируемых аксиом.

I. Аксиомы принадлежности

I, 1. Каковы бы ни были две точки A и B, существует прямая a, которой принадлежат эти точки.

I, 2. Каковы бы ни были две точки A и B, существует не более одной прямой, которой принадлежат эти точки.

I, 3. Каждой прямой a принадлежат по крайней мере две точки. Существуют по крайней мере три точки, не принадлежащие одной прямой.

Указанные три аксиомы исчерпывают список аксиом принадлежности планиметрии. Следующие пять аксиом вместе с указанными тремя завершают список аксиом принадлежности стереометрии.

I, 4. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует плоскость б, которой принадлежат эти три точки. Каждой плоскости принадлежит хотя бы одна точка.

I, 5. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует не более одной плоскости, которой принадлежат эти точки.

I, 6. Если две принадлежащие прямой a различные точки A и B принадлежат некоторой плоскости б, то каждая принадлежащая прямой a точка принадлежит указанной плоскости.

I, 7. Если существует одна точка A, принадлежащая двум плоскостям б и в, то существует по крайней мере ещё одна точка B, принадлежащая обоим этим плоскостям.

I, 8. Существуют по крайней мере четыре точки, не принадлежащие одной плоскости.

С целью использования привычной для нас геометрической лексики договоримся отождествлять между собой следующие выражения: 1) «точка А принадлежит прямой a (плоскости б)», 2) «прямая а (плоскость б) проходит через точку А» 3) «точка А лежит на прямой а (плоскости б)» 4) «точка А является точкой прямой а (плоскости б)» и тому подобные.

Теорема 1. Две различные прямые не могут иметь больше одной общей точки.

Теорема 2. Две плоскости либо совсем не имеют общих точек, либо имеют общую прямую, на которой лежат все их общие точки.

Теорема 3. Плоскость и не лежащая на ней прямая не могут иметь более одной общей точки.

Теорема 4. Через прямую и не лежащую на ней точку, или через две различные прямые с общей точкой проходит одна и только одна плоскость.

Теорема 5. Каждая плоскость содержит по крайней мере три точки.

II. Аксиомы порядка

II, 1. Если точка B прямой а лежит между точками А и С той же прямой, то А, В и С - различные точки указанной прямой, причем В лежит также и между С и А.

II, 2. Каковы бы ни были две различные точки А и С, на определяемой ими прямой существует по крайней мере она точка В такая, что С лежит между А и В.

II, 3. Среди любых трёх точек, лежащих на одной прямой существует не более одной точки, лежащей между двумя другими.

Сформулированные три аксиомы относятся к расположению объектов на прямой и потому называются линейными аксиомами порядка. Формулируемая ниже последняя аксиома порядка относится к расположению геометрических объектов на плоскости. Для того, чтобы сформулировать эту аксиому, введём понятие отрезка.

Пару различных точек А и В назовём отрезком и будем обозначать символом АВ или ВА. Точки прямой, определяемой А и В, лежащие между ними, будем называть внутренними точками, или просто точками отрезка АВ. Остальные точки указанной прямой будем называть внешними точками отрезка АВ.

II, 4 (Аксиома Паша). Если А, В и С - три точки, не лежащие на одной прямой, и а - некая прямая в плоскости, определяемой этими точками, не содержащая ни одной из указанных точек и проходящая через некоторую точку отрезка АВ, то эта прямая проходит также либо через некоторую точку отрезка АС, либо через некоторую точку отрезка ВС.

Подчеркнём, что из одних аксиом порядка II, 1 - 4 ещё не вытекает, что любой отрезок имеет внутренние точки. Однако привлекая ещё аксиомы принадлежности I, 1 - 3 можно доказать следующее утверждение:

Теорема 6. Каковы бы ни были две различные точки А и В на прямой, ими определяемой, существует по крайней мере одна точка С, лежащая между А и В.

Теорема 7. Среди любых трёх точек одной прямой всегда существует одна точка, лежащая между двумя другими.

Теорема 8. Если точки А, В и С не принадлежат одной прямой и если некоторая прямая а пересекает Под термином «прямая пересекает отрезок» мы подразумеваем, что указанная прямая содержит некоторую внутреннюю точку этого отрезка. какие-либо два из отрезков АВ, ВС и АС, то эта прямая не пересекает третий из указанных отрезков.

Теорема 9. Если В лежит на отрезке АС, и С - на отрезке ВD, то В и С лежат на отрезке АD.

Теорема 10. Если С лежит на отрезке АD, а В - на отрезке АС, то В лежит также на отрезке АD, а С - на отрезке BD.

Теорема 11. Между любыми двумя точками прямой существует бесконечно много других её точек.

Теорема 12. Пусть каждая из точек С и D лежит между точками А и В. Тогда если М лежит между С и D, то М лежит и между А и В.

Теорема 13. Если точки С и D лежат между точками А и В, то все точки отрезка СD принадлежат отрезку АВ (в этом случае мы будем говорить, что отрезок СD лежит внутри отрезка АВ).

Теорема 14. Если точка С лежит между точками А и В, то 1) никакая точка отрезка АС не может быть точкой отрезка CВ, 2) каждая отличная от С точка отрезка АВ принадлежит либо отрезку АС, либо отрезку СВ.

Указанные утверждения позволяют упорядочить множество точек любой прямой и выбрать на этой прямой направление.

Будем говорить, что две различные точки А и В прямой a лежат по разные стороны (по одну сторону) от третьей точки О той же прямой, если точка О лежит (не лежит) между А и В.

Из указанных выше утверждений вытекает следующая теорема.

Теорема 15. Произвольная точка О каждой прямой а разбивает все остальные точки этой прямой на два непустых класса так, что любые две точки прямой а, принадлежащие одному и тому же классу, лежат по одну сторону от О, а любые две точки, принадлежащие разным классам, лежат по разные стороны от О.

Таким образом, задание на любой прямой двух различных точек О и Е определяет на этой прямой луч или полупрямую ОЕ, обладающую тем свойством, что любая её точка и точка Е лежат по одну сторону от О.

Выбрав на прямой а две различные точки О и Е, мы можем теперь определить порядок следования точек на прямой по следующему правилу: 1) если А и В - любые точки луча ОЕ, то будем говорить, что А предшествует В, если А лежит между О и В, 2) будем говорить, что точка О предшествует любой точке луча ОЕ, 3) будем говорить, что любая точка, принадлежащая той же прямой и не принадлежащая лучу ОЕ, предшествует как точке О, так и любой точке луча ОЕ, 4) если А и В - любые точки, не принадлежащие лучу ОЕ, то мы будем говорить, что А предшествует В, если В лежит между А и О.

Легко проверить, что для выбранного нами порядка следования точек прямой а справедливо свойство транзитивности: если А предшествует В, а В предшествует С, то А предшествует С.

Аксиомы, приведённые выше, позволяют упорядочить и точки, принадлежащие произвольной плоскости б.

Теорема 16. Каждая прямая а, принадлежащая плоскости б, разделяет не лежащие на ней точки этой плоскости на два непустых класса так, что любые две точки А и В из разных классов определяют отрезок АВ, содержащий точку прямой а, а любые две точки А и А из одного класса определяют отрезок АА, внутри которого не лежит ни одна точка прямой а.

В соответствие с утверждением этой теоремы мы можем говорить, что точки А и А (одного класса) лежат в плоскости б по одну сторону от прямой а, а точки А и В (разных классов) лежат в плоскости б по разные стороны от прямой а.

III. Аксиомы конгруэнтности

III, 1. Если А и В - две точки на прямой а, А - точка на той же прямой или на другой прямой а, то по данную от точки А сторону прямой а найдется, и притом только одна, точка В такая, что отрезок АB конгруэнтен отрезку АВ. Каждый отрезок АВ конгруэнтен отрезку ВА.11 Из этой аксиомы вытекает возможность перемещения отрезка АВ вдоль прямой, на которой он лежит (с сохранением его длины и направления). Будем говорить, что направленный отрезок получен в результате перемещения направленного отрезка , если отрезок CD конгруэнтен отрезку АВ и если либо отрезок AD лежит внутри отрезка ВС, либо отрезок ВС лежит внутри отрезка AD.

III, 2. Если отрезки АB и А”B” конгруэнтны одному и тому же отрезку АВ, то они конгруэнтны и между собой.

III, 3. Пусть АВ и ВС - два отрезка прямой а, не имеющие общих внутренних точек, АB и BC - два отрезка той же прямой, или другой прямой а, также не имеющие общих внутренних точек. Тогда если отрезок АВ конгруэнтен отрезку АB, а отрезок ВС конгруэнтен отрезку BC, то отрезок АС конгруэнтен отрезку АC.

Сформулированные три аксиомы относятся к конгруэнтности отрезков. Для формулировки следующих аксиом нам понадобятся понятие угла и его внутренних точек.

Пара полупрямых h и k, выходящих из одной и той же точки О и не лежащих на одной прямой, называется углом и обозначается символом или .

Если полупрямые задаются двумя своими точками ОА и ОВ, то мы будем обозначать угол символом или . В силу теоремы 4 любые два луча h и k, составляющие угол , определяют, и притом единственную, плоскость б.

Внутренними точками будем называть те точки плоскости б, которые, во-первых, лежат по ту сторону от прямой, содержащей луч h, что и любая точка луча k, и, во-вторых, лежат по ту сторону от прямой, содержащей луч k, что и любая точка луча h.

III, 4. Пусть даны на плоскости б, прямая а на этой же или на какой-либо другой плоскости б и задана определённая сторона плоскости б относительно прямой а. Пусть h - луч прямой а, исходящий из некоторой точки О. Тогда на плоскости б существует один и только один луч k такой, что конгруэнтен , и при этом все внутренние точки лежат по заданную сторону от прямой а. Каждый угол конгруэнтен самому себе.

III, 5. Пусть А, В и С - три точки, не лежащие на одной прямой, А, B и С - другие три точки, также не лежащие на одной прямой. Тогда если отрезок АВ конгруэнтен отрезку АB, отрезок АС конгруэнтен отрезку АC и конгруэнтен , то конгруэнтен и конгруэнтен

Договоримся теперь о сравнении неконгруэнтных отрезков и углов.

Будем говорить, что отрезок АВ больше отрезка АB, если на прямой, определяемой точками А и В, найдётся лежащая между этими точками точка С такая, что отрезок АС конгруэнтен отрезку АВ. Будем говорить, что отрезок АВ меньше отрезка АB, если отрезок АB больше отрезка АВ.

Символически тот факт, что отрезок АВ меньше отрезка АB (конгруэнтен отрезку АB) будем записывать так:

АВ<AB (AB=AB).

Будем говорить, что больше , если в плоскости, определяемой , найдётся луч ОС, все точки которого являются внутренними точками , такой, что конгруэнтен . Будем говорить, что меньше , если больше .

С помощью аксиом принадлежности, порядка и конгруэнтности можно доказать целый ряд теорем элементарной геометрии. Сюда относятся: 1) три широко известные теоремы о конгруэнтности (равенстве) двух треугольников, 2) теорема о конгруэнтности вертикальных углов, 3) теорема о конгруэнтности всех прямых углов, 4) теорема о единственности перпендикуляра, опущенного из точки на прямую, 5) теорема о единственности перпендикуляра, проведённого к данной точке прямой, 6) теорема о внешнем угле треугольника, 7) теорема о сравнении перпендикуляра и наклонной.

IV. Аксиомы непрерывности

С помощью аксиом принадлежности, порядка и конгруэнтности мы произвели сравнение отрезков, позволяющее заключить, каким из трёх знаков <, = или > связаны эти отрезки.

Указанных аксиом, однако, недостаточно 1) для обоснования возможности измерения отрезков, позволяющее поставить в соответствие каждому отрезку определённое вещественное число, 2) для обоснования того, что указанное соответствие является взаимно однозначным.

Для проведения такого обоснования следует присоединить к аксиомам I, II и III две аксиомы непрерывности.

IV, 1 (аксиома Архимеда). Пусть АВ и СD - произвольные отрезки. Тогда на прямой, определяемой точками А и В существует конечное число точек А1, А2, ..., Аn, расположенных так, что точка А1 лежит между А и А2, точка А2 лежит между А1 и А3, ..., точка Аn-1 лежит между Аn-2 и Аn, причём отрезки АА1, А1А2, ..., Аn-1An конгруэнтны отрезку CD и точка В лежит между А и Аn.

IV, 2 (аксиома линейной полноты). Совокупность всех точек произвольной прямой а нельзя пополнить новыми объектами (точками) так, чтобы 1) на пополненной прямой были определены соотношения «лежит между» и «конгруэнтен», определён порядок следования точек и справедливы аксиомы конгруэнтности III, 1 - 3 и аксиома Архимеда IV, 1, 2) по отношению к прежним точкам прямой определённые на пополненной прямой соотношения «лежит между» и «конгруэнтен» сохраняли старый смысл.

Присоединение к аксиомам I, 1 - 3, II и III, 1- 3 аксиомы Архимеда позволяет поставить в соответствие каждой точке произвольной прямой а определённое вещественное число х, называемое координатой этой точки, а присоединение ещё и аксиомы линейной полноты позволяет утверждать, что координаты всех точек прямой а исчерпывают множество всех вещественных чисел. Пользуясь этим, можно обосновать метод координат.

V. Аксиома параллельности

Самая последняя аксиома играет в геометрии особую роль, определяя разделение геометрии на две логически непротиворечивые и взаимно исключающие друг друга системы: евклидову и неевклидову геометрии.

В геометрии Евклида эта аксиома формулируется так.

V. Пусть а - произвольная прямая и А - точка, лежащая вне прямой а, тогда в плоскости б, определяемой точкой А и прямой а существует не более одной прямой, проходящей через А и не пересекающей а.

Долгое время геометры пытались выяснить, не является ли аксиома параллельности следствием всех остальных аксиом. Этот вопрос был решен Николаем Ивановичем Лобачевским, который доказал независимость аксиомы V от аксиом I - IV.

По-другому результат Лобачевского можно сформулировать так: если к аксиомам I - IV присоединить утверждение, отрицающее справедливость аксиомы V, то следствия всех этих положений будут составлять логически непротиворечивую систему (неевклидову геометрию Лобачевского).

Систему следствий, вытекающих из одних только аксиом I - IV обычно называют абсолютной геометрией. Абсолютная геометрия является общей частью как евклидовой, так и неевклидовой геометрий, ибо все предложения, которые могут быть доказаны только с помощью аксиом I - IV, верны как в геометрии Евклида, так и в геометрии Лобачевского.

Доказательство непротиворечивости аксиоматики Гильберта

Чтобы доказать непротиворечивость некоей теории Х, необходимо из материала другой, заведомо непротиворечивой, теории А построить такую модель, в которой выполняются все аксиомы теории Х. Если это удастся, теорию Х можно считать непротиворечивой. Следовательно, для того, чтобы доказать непротиворечивость гильбертовой системы, необходимо построить такую модель евклидовой геометрии, в которой выполнялись бы все аксиомы, предложенные Гильбертом.

Для построения такой модели, необходима вышеупомянутая заведомо непротиворечивая теория. В модели, построенной Гильбертом, такой теорией служит теория действительных чисел. Идея построения модели состояла в рассмотрении системы координат на плоскости. В такой системе каждой точке М плоскости соответствуют два числа х и у - её координаты. Чтобы понять суть построения модели забудем о плоскости и имеющейся на ней координатной системе, «точками» будем называть упорядоченные пары действительных чисел (х; у) т. е. пары (х; у) и (у; х) с различными х и у будем считать различными. Теперь попытаемся определить «прямую». Вспомним, что каждая прямая описывается в координатах линейным уравнением вида ax + by + c = 0, где хотя бы один из коэффициентов a и b отличен от нуля. Например, уравнение прямой, не параллельной оси ординат, имеет вид у = kx + l, или, что то же самое, ax + by + c = 0, где a = k, b = -1, c = l. Если же прямая параллельна оси ординат, ей соответствует уравнение x = p (т. е. уравнение ax + by + c = 0, где a = 1, b = 0, c = -p;). При этом если все коэффициенты уравнения ax + by + c = 0 умножить на одно и то же число k ? 0, то полученное уравнение будет описывать ту же прямую. Мы же в своей модели будем называть «прямой» любое линейное уравнение вида ax + by + c = 0, в котором хотя бы один из коэффициентов a и b отличен от нуля, причём коэффициенты рассматриваются с точностью до ненулевого множителя пропорциональности (при k ? 0 уравнения ax + by + c = 0 и (ak)x + (bk)y + kc = 0 считаются одной и той же прямой).

Далее, «точка» (х1; у1) лежит на «прямой», если числа х1 и у1 удовлетворяют указанному уравнению. Как видим, для определения «прямых», «точек» и расположения «точек» на «прямой» достаточно опереться на теорию действительных чисел. Легко проверить, что в указанной модели выполняются, например, такие аксиомы:

1. Через две различные «точки» проходит «прямая»

2. На «прямой» имеется не менее двух «точек»

Легко определить случай, при котором одна из трёх «точек» лежит на «прямой» «между» двумя другими. Когда A(x1; y1), B(x2; y2) и C(x3; y3) - три «точки», лежащие на одной «прямой», «точка» B считается расположенной «между» A и C при условии, что число x2 заключено между числами x1 и x3 (если x1 = x2 = x3, то y2 заключено между y1 и y3). Тогда очевидно, что

3. Из трёх «точек», лежащих на одной «прямой», одна и только одна расположена между двумя другими.

Выполняются и другие аксиомы порядка (в частности, аксиома Паша). Заметим, что мы специально не иллюстрируем содержание аксиом чертежами, поскольку при чисто аксиоматическом изложении не следует использовать привычные геометрические представления.

Будем говорить, что две «прямые» a1x + b1y + c1 = 0 и a2x + b2y + c2 = 0 «параллельны», если коэффициенты a1, b1 и a2, b2 пропорциональны. Это можно кратко записать равенством a1b2 - a2b1 = 0. Нетрудно проверить, что две «параллельные» «прямые» либо не имеют ни одной общей «точки», либо совпадают (в обычной геометрии тоже часто принимают, что прямая параллельна самой себе). Более того,

4. Через любую «точку» A1(x1; y1) проходит одна и только одна «прямая», параллельная данной «прямой» Ax + By + C = 0.

Иначе говоря, в указанной модели выполняется аксиома параллельности. Можно здесь говорить и о длинах отрезков, и о величинах углов. Например, «расстоянием» между двумя «точками» A1(x1; y1) и A2(x2; y2) называется число

A1A2 =

Далее, в привычной евклидовой геометрии справедлива теорема косинусов:

cos C =

(величина угла С равна арккосинусу правой части равенства. Можно возразить, что тригонометрические функции (и, в частности, косинус) определяются геометрически и обойтись без обычной евклидовой геометрии в данном случае невозможно. Однако это неверно. В математическом анализе доказывается, что функция cos x задаётся бесконечным рядом

cos x = ,

который сходится для любого действительного x. Таким образом, в рассматриваемой модели допустимо говорить и о расстояниях, и о величинах углов.

Так же легко проверить, что в ней выполняются и аксиомы конгруэнтности (в частности, первый и второй признаки равенства треугольников). В итоге все гильбертовы аксиомы (представляющие собой развитие и уточнение аксиом Евклида) в рассматриваемой модели выполняются. Это и означает, что система аксиом евклидовой геометрии условно непротиворечива. Другими словами, она непротиворечива, если непротиворечива теория действительных чисел.