1.4 Другие системы аксиом геометрии
Вернёмся, однако, к евклидовой геометрии. В настоящее время систему аксиом Гильберта часто заменяют эквивалентной ей системой. Мы приведём те группы аксиом одной такой системы, по которым она отличается от вышеизложенной системы (группы аксиом порядка и движения, заменяющей в этой системе группу аксиом конгруэнтности).
Преимущество этой системы заключается в том, что она позволяет проще и быстрее получить первоначальные геометрические факты, лучше, как многим кажется, описывает свойства основных геометрических объектов с точки зрения привычных представлений.
II. Аксиомы порядка
Будем полагать, что на прямой есть два направления, взаимно противоположных друг другу, и по отношению каждому из них каждая пара точек А и В находится в известном отношении, которое выражается словом «предшествовать». Это отношение обозначается знаком <, так что выражение «А предшествует В» можно символически записать так:
А < B.
Требуется, чтобы указанное отношение для точек на прямой удовлетворяло нижеследующим пяти аксиомам.
II, 1. Если А < В в одном направлении, то В < А в противоположном направлении.
II, 2. В одном из двух направлений А < В исключает В < А.
II, 3. В одном из двух направлений если А < В и В < С, то А < С.
II, 4. В одном из двух направлений для каждой точки В найдутся точки А и С такие, что А < B < C.
Каждое из утверждений аксиом II, 2 - 4 относится к одному из двух направлений на прямой. По аксиоме II, 1 оно верно также и для противоположного направления.
Прежде чем сформулировать последнюю аксиому, определим некоторые понятия. Пусть а - прямая и А - точка на ней. При фиксированном направлении на прямой точка А разбивает её на две части (полупрямые), для каждой точки Х одной из них Х < А, а для каждой точки Х другой полупрямой А < X. Очевидно, это разбиение прямой на части не зависит от выбранного на ней направления (аксиома II, 1).
Пусть А и В - две точки прямой а. Если для точки С прямой а выполняется условие А < C < В или В < C < А, то мы будем говорить, что точка С лежит между точками А и В. Очевидно, свойство точки лежать между двумя данными не зависит от направления на прямой. Часть прямой а, все точки которой лежат между А и В, мы будем называть отрезком АВ, а точки А и В - концами отрезка.
II, 5. Прямая а, лежащая в плоскости б, разбивает эту плоскость на две полуплоскости так, что если X и Y - две точки одной полуплоскости, то отрезок XY не пересекается с прямой а, если же X и Y принадлежат разным полуплоскостям, то отрезок XY пересекается с прямой а.
Из аксиом принадлежности (связи), которые в этой системе аксиом аналогичны аксиомам принадлежности Гильберта, и аксиом порядка выводятся следующие следствия.
Теорема 1. Среди точек А, В, С на прямой а одна и только одна лежит между двумя другими.
Теорема 2. Каждый отрезок содержит по крайней мере одну точку.
Теорема 3. Если В - точка отрезка АС, то отрезки АВ и ВС принадлежат АС, т. е. каждая точка отрезка АС и каждая точка отрезка ВС принадлежит отрезку АС.
Теорема 4. Если В - точка отрезка АС и X - точка того же отрезка, отличная от В, то она принадлежит либо отрезку АВ, либо ВС.
Теорема 5. Пусть б - плоскость, и а - лежащая на ней прямая, b - другая прямая, или полупрямая, или отрезок в той же плоскости б.
Тогда, если b не пересекает а, то все точки b лежат по одну сторону от а, т. е. в одной из полуплоскостей, определяемых прямой а.
Пусть А, В и С - три точки, не лежащие на одной прямой. Фигура, составленная из трёх отрезков АВ, ВС и АС называется треугольником, точки А, В и С - вершинами треугольника, а отрезки АВ, ВС и АС - сторонами треугольника.
Теорема 9. Пусть АВС - треугольник в плоскости б и а - прямая в этой плоскости, не проходящая ни через одну из точек А, В, С. Тогда если эта прямая пересекает сторону АВ, то она пересекает и притом только одну из двух других сторон ВС или АС.
Нельзя не заметить, что последняя приведённая теорема почти аналогична аксиоме Паша, входящей в систему Гильберта (см. страницу 9), и отличается от неё только тем, что в аксиоме не утверждается единственность второй пересекаемой стороны треугольника.
III. Аксиомы движения
В данной системе группа аксиом конгруэнтности заменена этой группой аксиом. Впрочем, третьи группы аксиом обоих систем в конечном итоге выполняют одну и ту же задачу, определяя разными способами одни и те же явления (группа аксиом конгруэнтности у Гильберта определяет отношения конгруэнтности напрямую, аксиомы движения - через свои следствия).
Итак, будем требовать, чтобы существовали такие отражения точек, прямых и плоскостей на точки, прямые и плоскости, именуемые движениями, удовлетворяющие следующим аксиомам.
III, 1. Каждое движение Н сохраняет отношение принадлежности.
То есть, если точка А принадлежит прямой а (плоскости б), то её образ при движении Н (обозначаемый НА) принадлежит образу прямой На (соответственно образу плоскости Нб).