logo search
Ekzamen-Дисмат

Функции алгебры логики.

Пусть Е2={0, 1}. Булевой функцией f наз. отображение вида f: E2nE2 или f=f(x1, x2, …xn). Всевозможные упорядоченые последовательности из нулей и единиц наз. набором. |E2n|=2n. Область определения ф-ции конечна, поэтому ее удобно описывать с помощьб таблиц истиности. Каждый набор x1, x2, …xn можно рассматривать как некоторое двоичное число. будем предполагать, что наборы x1, …xn упорядочены в таблице по возрастанию (как двоичные числа). Каждый последующий набор получается из предыдущего прибавлением двоич. единицы (00…1). Последний столбец табл. истиности обозначается Nf или f. Бул. ф-ция от n переменных однозначно определяется столбцом своих значений. Длинна столбца 2n и каждый эл. принимает одно из двух значений. Поэтому число бул. функций равно 22^n. Если мн-во всех бул. функций Р2(n), то |Р2(n)|=22^n. Ф-ции 2n и 22^n быстро растут с ростом n и поэтому распознование св-в бул. ф-ций полным перебором строк таблицы истиности и полным перебором бул. ф-ций от n переменных на практике возможно только для небольших n. Перебор строк – для n40. Перебор бул. ф-ций – для n6. Этот результат не зависит от быстродействия машин.

Переменную xi наз. несуществественной (фиктивной) для ф-ции f(x1, x2, …xn), если ее значение не влияет на значение ф‑ции. Пусть =(1, 2,…i-1, 0, i+1,… n) и ’=(1, 2,…i-1, 1, i+1,… n). Тогда  и ’ – соседние наборы по переменной i, понятно, что хi несущественна для f, если  и ’ f()=f(’). В противном случае переменную будем наз. существенной. Удаление фиктивной переменной осуществляется след. образом: из каждой пары соседних наборов оставляем один, а второй удаляем и даляем столбец, соот-щий фиктивной переменной. Операция введения фиктивной переменной осущ. в обратном порядке.

Две бул. ф-ции наз. равными, если одна из них получается из другой путем добавления или удаления фиктивной переменной. Среди бул. ф-ций выделяются элементарные бул. ф-ции: 1)константы: 1, 0; 2)тождественная ф-ция: х; 3)отрицание:х; 4)

\/

0

0

1

1

0

1

0

1

0

0

0

1

0

1

1

1

0

1

1

0

1

1

0

1

1

0

0

1

1

1

1

0

1

0

0

0