logo search
Вопросы к экзамену_2011

Дифференциальные уравнения.

  1. Понятия дифференциального уравнения и его решения. Порядок

дифференциального уравнения. Общее, особое, частное решения.

  1. Задача Коши для дифференциального уравнения первого порядка. Теорема

существования и единственности. (Формулировка).

77. Поле направлений. Изоклины. Семейство интегральных кривых уравнения

первого порядка.

78. Дифференциальные уравнения с разделяющимися переменными. Построение

общего решения.

79. Однородные дифференциальные уравнения. Построение общего решения.

80. Линейные уравнения и уравнение Бернулли. Построение общего решения.

81. Уравнения в полных дифференциалах. Построение общего решения.

82. Понятие о дифференциальных уравнениях высших порядков. Теорема

существования и единственности решения задачи Коши. (Формулировка).

83. Линейные дифференциальные уравнения высших порядков. Однородные

уравнения. Фундаментальная система решений и структура общего решения

однородного уравнения. Вид общего решения неоднородного уравнения.

84. Линейные однородные уравнения с постоянными коэффициентами.

Характеристическое уравнение. Метод Эйлера. Представление общего

решения.

85. Вид общего решения линейного однородного дифференциального уравнения

для вещественных, комплексных и кратных корней характеристического

уравнения.

86. Линейные неоднородные дифференциальные уравнения. Метод Лагранжа

вариации произвольных постоянных.

87. Метод неопределенных коэффициентов для построения частных решений

неоднородных уравнений с постоянными коэффициентами и правой частью

специального вида.

88. Системы линейных дифференциальных уравнений с постоянными

коэффициентами. Задача Коши. Теорема существования и единственности

решения.

89. Подстановка и матричный методы построения общего решения однородной

системы линейных дифференциальных уравнений первого порядка с

постоянными коэффициентами.