Функции многих переменных.
47. Понятие функции многих независимых переменных. Область ее определения.
Связные и несвязные области. Метрика n-мерного пространства. Определения.
48. Окрестность точки в n-мерном пространстве. Понятие предела функции в
точке и области. Определения.
49. Частные и повторные пределы. Теорема о повторных пределах для функции двух
независимых переменных. Определения и формулировка.
50. Определение непрерывности функции многих переменных в точке и области.
Формулировки теорем Вейерштрасса для замкнутой односвязной области.
51. Частные производные функций многих переменных. Формула для вычисления
полного дифференциала n-го порядка.
52. Необходимые и достаточные условия максимума и минимума для функции
двух независимых переменных.
53. Понятие условного экстремума функций многих переменных. Метод Лагранжа
отыскания стационарных точек.
Неопределенный интеграл.
54. Определение первообразной функции. Теорема о числе первообразных.
Доказательство.
55. Неопределенный интеграл. Определение и свойства.
56. Вычисление площади области под графиком функции. Вывод формулы
Ньютона- Лейбница.
57. Вывод основных правил интегрирования.
58. Вывод формул замены переменной и интегрирования по частям в
неопределенном интеграле.
Числовые и функциональные ряды.
59. Понятие числового ряда. Частичные суммы. Определение сходимости ряда.
60. Арифметические свойства сходящихся рядов. Формулировка и доказательство
Необходимого условия сходимости числового ряда.
61. Теоремы сравнения для положительных рядов. Доказательство одной из них.
62. Признаки Д'Аламбера и Коши сходимости положительных рядов. Доказать
теорему Коши.
63. Интегральный признак Коши. Формулировка. Вывод условий сходимости
гармонических рядов.
64. Определение абсолютной сходимости любого числового ряда. Теорема о связи
абсолютной сходимости и сходимости в обычном смысле.Доказательство.
65. Знакопеременные ряды. Теорема Лейбница о сходимости таких рядов.
Доказательство.
66.Степенные ряды. Вывод формулы для радиуса сходимости степенного ряда
. Область сходимости и поведение ряда на ее границах.