logo
Вопросы к экзамену_2011

Функции многих переменных.

47. Понятие функции многих независимых переменных. Область ее определения.

Связные и несвязные области. Метрика n-мерного пространства. Определения.

48. Окрестность точки в n-мерном пространстве. Понятие предела функции в

точке и области. Определения.

49. Частные и повторные пределы. Теорема о повторных пределах для функции двух

независимых переменных. Определения и формулировка.

50. Определение непрерывности функции многих переменных в точке и области.

Формулировки теорем Вейерштрасса для замкнутой односвязной области.

51. Частные производные функций многих переменных. Формула для вычисления

полного дифференциала n-го порядка.

52. Необходимые и достаточные условия максимума и минимума для функции

двух независимых переменных.

53. Понятие условного экстремума функций многих переменных. Метод Лагранжа

отыскания стационарных точек.

Неопределенный интеграл.

54. Определение первообразной функции. Теорема о числе первообразных.

Доказательство.

55. Неопределенный интеграл. Определение и свойства.

56. Вычисление площади области под графиком функции. Вывод формулы

Ньютона- Лейбница.

57. Вывод основных правил интегрирования.

58. Вывод формул замены переменной и интегрирования по частям в

неопределенном интеграле.

Числовые и функциональные ряды.

59. Понятие числового ряда. Частичные суммы. Определение сходимости ряда.

60. Арифметические свойства сходящихся рядов. Формулировка и доказательство

Необходимого условия сходимости числового ряда.

61. Теоремы сравнения для положительных рядов. Доказательство одной из них.

62. Признаки Д'Аламбера и Коши сходимости положительных рядов. Доказать

теорему Коши.

63. Интегральный признак Коши. Формулировка. Вывод условий сходимости

гармонических рядов.

64. Определение абсолютной сходимости любого числового ряда. Теорема о связи

абсолютной сходимости и сходимости в обычном смысле.Доказательство.

65. Знакопеременные ряды. Теорема Лейбница о сходимости таких рядов.

Доказательство.

66.Степенные ряды. Вывод формулы для радиуса сходимости степенного ряда

. Область сходимости и поведение ряда на ее границах.