1.3. Цели и задачи учебной дисциплины – требования к результатам освоения учебной дисциплины:
В результате освоения учебной дисциплины обучающийся должен уметь:
выполнять арифметические действия над числами, сочетая устные и письменные приемы; находить приближенные значения величин и погрешности вычислений (абсолютная и относительная); сравнивать числовые выражения;
находить значения корня, степени, логарифма, тригонометрических выражений на основе определения, используя при необходимости инструментальные средства; пользоваться приближенной оценкой при практических расчетах;
выполнять преобразования выражений, применяя формулы, связанные со свойствами степеней, логарифмов, тригонометрических функций;
вычислять значение функции по заданному значению аргумента при различных способах задания функции;
определять основные свойства числовых функций, иллюстрировать их на графиках;
строить графики изученных функций, иллюстрировать по графику свойства элементарных функций;
использовать понятие функции для описания и анализа зависимостей величин;
находить производные элементарных функций;
использовать производную для изучения свойств функций и построения графиков;
применять производную для проведения приближенных вычислений, решать задачи прикладного характера на нахождение наибольшего и наименьшего значения;
вычислять в простейших случаях площади и объемы с использованием определенного интеграла;
решать рациональные, показательные, логарифмические, тригонометрические уравнения, сводящиеся к линейным и квадратным, а также аналогичные неравенства и системы;
использовать графический метод решения уравнений и неравенств;
изображать на координатной плоскости решения уравнений, неравенств и систем с двумя неизвестными;
составлять и решать уравнения и неравенства, связывающие неизвестные величины в текстовых (в том числе прикладных) задачах;
решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;
распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
анализировать в простейших случаях взаимное расположение объектов в пространстве;
изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
строить простейшие сечения куба, призмы, пирамиды;
решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
использовать при решении стереометрических задач планиметрические факты и методы;
проводить доказательные рассуждения в ходе решения задач;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
для практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;
для решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;
для построения и исследования простейших математических моделей;
для анализа реальных числовых данных, представленных в виде диаграмм, графиков;
анализа информации статистического характера;
для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
В результате освоения учебной дисциплины обучающийся должен знать:
значение математической науки для решения задач, возникающих в теории и практике;
широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки;
историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
вероятностный характер различных процессов окружающего мира.
- Рабочая програмМа учебной дисциплины математика
- Содержание
- 1. Паспорт программы учебной дисциплины Математика
- 1.1.Область применения рабочей программы
- 1.2. Место учебной дисциплины в структуре основной профессиональной образовательной программы:
- 1.3. Цели и задачи учебной дисциплины – требования к результатам освоения учебной дисциплины:
- 1.4. Рекомендуемое количество часов на освоение примерной программы учебной дисциплины:
- 2. Структура и примерное содержание учебной дисциплины
- 2.1. Объем учебной дисциплины и виды учебной работы
- 2.2. Тематический план и содержание учебной дисциплины __Математика_____
- 3. Условия реализации учебной дисциплины
- 3.1. Требования к минимальному материально-техническому обеспечению
- 3.2. Информационное обеспечение обучения
- 4. Контроль и оценка результатов освоения учебной дисциплины