logo search
Потом вектора напряженности эл-кого поля

[Править] Расчёт напряжённости поля бесконечной нити

Рассмотрим поле, создаваемое бесконечной прямолинейной нитью с линейной плотностью заряда, равной λ. Пусть требуется определить напряжённость, создаваемую этим полем на расстоянии R от нити. Возьмём в качестве гауссовой поверхности цилиндр с осью, совпадающей с нитью, радиусом R и высотой Δl. Тогда поток напряжённости через эту поверхность по теореме Гаусса таков (в единицах СИ):

В силу симметрии

  1. вектор напряженности поля направлен перпендикулярно нити, прямо от нее (или прямо к ней).

  2. модуль этого вектора в любой точке поверхности цилиндра одинаков.

Тогда поток напряжённости через эту поверхность можно рассчитать следующим образом:

Учитывается только площадь боковой поверхности цилиндра, так как поток через основания цилиндра равен нулю (вследствие направления E по касательной к ним). Приравнивая два полученных выражения для , имеем:

(В системе СГС ответ: E = 2λ / R).

Поле равномерно заряженной бесконечной плоскости. Бесконечная плоскость (рис. 1) заряжена с постоянной поверхностной плотностью +σ (σ = dQ/dS — заряд, который приходится на единицу поверхности). Линии напряженности перпендикулярны данной плоскости и направлены от нее в каждую из сторон. Возьмем в качестве замкнутой поверхности цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности поля (соsα=0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания Еn совпадает с Е), т. е. равен 2ES. Заряд, который заключен внутри построенной цилиндрической поверхности, равен σS. Согласно теореме Гаусса, 2ES=σS/ε0, откуда   (1)  Из формулы (1) следует, что Е не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях равна по модулю, иными словами, поле равномерно заряженной плоскости однородно

А вот тут хуй знает что как. На разных сайтах по разному так что не уверен я.

сфера

Рассмотрим электрическое поле равномерно заряженной сферы (полого тела, не шара). Поток напряжённости через любую замкнутую поверхность внутри сферы равен нуля, так как внутри этой поверхности нет заряда. Отсюда следует, что внутри сферы напряжённость равна нулю. Внутри себя равномерно заряженная сфера поля не создаёт. E=0 при r<R.

И з соображений симметрии ясно, что вне сферы линии напряжённости направлены по радиусам. Напряжённость одинакова (по модулю) на одинаковом расстоянии от центра сферы. Проведём сферическую поверхность радиусом r>R. Поток напряжённости через неё равен N=EnS=4πr2En. Пусть её заряд равен q. По теореме Гаусса:                       q 4πr2En=4πk—, тогда                       ε           |q| Е=k—— при r>R.           εr2

шар

Если заряд распределён в объёме тела, то можно для его описания можно использовать объёмную плотность заряда. Выделим в теле малый объём ΔV, пусть его заряд Δq. Тогда объёмная плотность заряда равна ρ=Δq/ΔV. Если заряд распределён равномерно, то ρ=q/V.

Рассмотрим электрическое поле равномерно заряженного шара. Напомним, что объём шара равен V=(4/3)πR3. Тогда его заряд q=(4/3)πR3ρ. Напряжённость поля вне шара можно найти так же, как и вне сферы:           |q|       4πR3ρ Е=k——=k——— при r>R.           εr2       3εr2

Д ля нахождения напряжённости внутри шара применим теорему Гаусса для сферической поверхности радиусом r<R. По соображениям симметрии вектор напряжённости перпендикулярен ей и одинаков по модулю в любой её точке. По теореме Гаусса:                       q            4πr3ρ 4πr2En=4πk—=4πk———, тогда                       ε                3ε         4π E=k—ρr при r<R.         3ε

Напряжённость поля внутри шара линейно растёт с увеличением расстояния от его центра. Если мы рассматриваем действие поля шара на заряд, находящийся на расстоянии r от его центра, то шар можно мысленно разделить сферой радиусом r на две части. Действие поля равно действию поля внутренней части, а внешняя поля не создаёт (внутри себя заряженная сфера поля не создаёт). Вот ещё одно сходство взаимодействия зарядов с законом всемирного тяготения: ускорение свободного падения a=Fт/m внутри сферического однородного тела (например, Земли) также обратно пропорционально расстоянию до центра, как и напряжённость E=Fк/q.

Вот со второго сайта.

Для нахождения поля внутри шара также используем закон Гаусса, но гауссову сферу строим внутри шара.

Если шар полый и заряд распределён по поверхности шара, то внутрь гауссовой поверхности не попадает никакого заряда, то есть поток поля через поверхность равен нулю, значит и само поле также равно нулю.

Если шар сплошной и равномерно заряжен по объёму, то внутрь гауссовой сферы радиуса r попадает заряд, равный произведению объёмной плотности заряда на объём гауссовой сферы:

Поле внутри равномерно заряженного шара будет:

Поле равномерно заряженного бесконечного цилиндра (нити). Бесконечный цилиндр радиуса R (рис. 6) равномерно заряжен слинейной плотностью τ (τ = –dQ/dt заряд, который приходится на единицу длины). Из соображений симметрии мы видим, что линии напряженности будут направлены по радиусам круговых сечений цилиндра с одинаковой густотой во все стороны относительно оси цилиндра. Мысленно построим в качестве замкнутой поверхности коаксиальный цилиндр радиуса r и высотой l. Поток вектора Е сквозь торцы коаксиального цилиндра равен нулю (торцы и линии напряженности параллельны), а сквозь боковую поверхность равен 2πrlЕ. Используя теорему Гаусса, при r>R 2πrlЕ = τl0, откуда   (5)  Если r<R, то замкнутая поверхность внутри зарядов не содержит, поэтому в этой области E=0. Значит, напряженность поля вне равномерно заряженного бесконечного цилиндра задается выражением (5), внутри же его поле равно нулю.