Алгоритм Дейкстры

контрольная работа

Теория графов как математический аппарат для решения задач

ТЕОРИЯ ГРАФОВ - это область дискретной математики, особенностью которой является геометрический подход к изучению объектов. [9] Основной объект теории графов-граф и его обобщения.

Первые задачи теории графов были связаны с решением математических развлекательных задач и головоломок (задача о Кенигсбергских мостах, задача о расстановке ферзей на шахматной доске, задачи о перевозках, задача о кругосветном путешествии и другие).

Одним из первых результатов в теории графов явился критерий существования обхода всех ребер графа без повторений, полученный Л. Эйлером при решении задачи о Кенигсбергских мостах. Вот пересказ отрывка из письма Эйлера от 13 марта 1736 году: ”Мне была предложена задача об острове, расположенном в городе Кенигсберге и окруженном рекой, через которую перекинуто 7 мостов.

Спрашивается, может ли кто-нибудь непрерывно обойти их, проходя только однажды через каждый мост. И тут же мне было сообщено, что никто еще до сих пор не смог это проделать, но никто и не доказал, что это невозможно.

Вопрос этот, хотя и банальный, показался мне, однако, достойным внимания тем, что для его решения недостаточны ни геометрия, ни алгебра, ни комбинаторное искусство. После долгих размышлений я нашел лёгкое правило, основанное на вполне убедительном доказательстве, с помощью которого можно во всех задачах такого рода тотчас же определить, может ли быть совершен такой обход через какое угодно число и как угодно расположенных мостов или не может“. Кенигсбергские мосты схематически можно изобразить так (рис.1):

Рис.1. Кенигсбергские мосты на карте, и в виде графа.

В середине 19 в. появились работы, в которых при решении практических задач были получены результаты, относящиеся к теории графов. Так, например, Г. Кирхгоф при составлении полной системы уравнений для токов и напряжений в электрической схеме предложил по существу представлять такую схему графом и находить в этом графе основные деревья, с помощью которых выделяются линейно независимые системы контуров. А. Кэли, исходя из задач подсчета числа изомеров предельных углеводородов, пришел к задачам перечисления и описания деревьев, обладающих заданными свойствами, и решил некоторые из них.

В 20 в. задачи, связанные с графами, начали возникать не только в физике, химии, электротехнике биологии, экономике, социологии и т.д., но и внутри математики, в таких разделах, как топология, алгебра, теория вероятностей, теория чисел. В начале 20 в. графы стали использоваться для представления некоторых математических объектов и формальной постановки различных дискретных задач; при этом наряду с термином "граф" употреблялись и другие термины, например, карта, комплекс, диаграмма, сеть, лабиринт. После выхода в свет в 1936 году монографии Д. Кёнига термин "граф" стал более употребительным, чем другие. В этой работе были систематизированы известные к тому времени факты. В 1936 году вышла небольшая брошюра Ойстена Оре, содержащая блестящее элементарное введение в теорию графов. В 1962 году в Англии была издана книга французского математика Клода Бержа “Теория графов и её приложение”. Обе книги, безусловно, представляют интерес для любителей занимательной математики. Сотни известных головоломок, на первый взгляд не имеющих ничего общего друг с другом, легко решаются с помощью теории графов.

В 20-30-х годах 20 в. появились первые результаты, относящиеся к изучению свойств связности, планарности, симметрии графов, которые привели к формированию ряда новых направлений в теории графов.

Значительно расширились исследования по теории графов в конце 40-х - начале 50-х годов, прежде всего в силу развития кибернетики и вычислительной техники. Благодаря развитию вычислительной техники, изучению сложных кибернетических систем, интерес к теории графов возрос, а проблематика теории графов существенным образом обогатилась. Кроме того, использование ЭВМ позволило решать возникающие на практике конкретные задачи, связанные с большим объемом вычислений, прежде не поддававшиеся решению. Для ряда экстремальных задач теории графов были разработаны методы их решения, например, один из таких методов позволяет решать задачи о построении максимального потока через сеть. Для отдельных классов графов (деревья, плоские графы и т.д.), которые изучались и ранее, было показано, что решения некоторых задач для графов из этих классов находятся проще, чем для произвольных графов (нахождение условий существования графов с заданными свойствами, установление изоморфизма графов и др.).

Характеризуя проблематику теории графов, можно отметить, что некоторые направления носят более комбинаторный характер, другие - более геометрический. К первым относятся, например, задачи о подсчете и перечислении графов с фиксированными свойствами, задачи о построении графов с заданными свойствами. Геометрический (топологический) характер носят многие циклы задач теории графов, например, графов обходы, графов укладки. Существуют направления, связанные с различными классификациями графов, например, по свойствам их разложения.

В теории графов существуют специфические методы решения экстремальных задач. Один из них основан на теореме о максимальном потоке и минимальном разрезе, утверждающей, что максимальный поток, который можно пропустить через сеть из вершины U в вершину V, равен минимальной пропускной способности разрезов, разделяющих вершины U и V. Были построены различные эффективные алгоритмы нахождения максимального потока.

Результаты и методы теории графов применяются при решении транспортных задач о перевозках, для нахождения оптимальных решений задачи о назначениях, для выделения "узких мест" при планировании и управлении разработок проектов, при составлении оптимальных маршрутов доставки грузов, а также при моделировании сложных технология, процессов, в построении различных дискретных устройств, в программировании и т.д.

Развитие теории графов в основном обязано большому числу всевозможных приложений. По-видимому, из всех математических объектов графы занимают одно из первых мест в качестве формальных моделей реальных систем.

Графы нашли применение практически во всех отраслях научных знаний: физике, биологии, химии, математике, истории, лингвистике, социальных науках, технике и т.п. Наибольшей популярностью теоретико-графовые модели используются при исследовании коммуникационных сетей, систем информатики, химических и генетических структур, электрических цепей и других систем сетевой структуры.

Делись добром ;)