Заключение
Математическая (или теоретическая) статистика опирается на методы и понятия теории вероятностей, но решает в каком-то смысле обратные задачи.
Если мы наблюдаем одновременно проявление двух (или более) признаков, т.е. имеем набор значений нескольких случайных величин -- что можно сказать об их зависимости? Есть она или нет? А если есть, то какова эта зависимость?
Часто бывает возможно высказать некие предположения о распределении, спрятанном в «черном ящике», или о его свойствах. В этом случае по опытным данным требуется подтвердить или опровергнуть эти предположения («гипотезы»). При этом надо помнить, что ответ «да» или «нет» может быть дан лишь с определенной степенью достоверности, и чем дольше мы можем продолжать эксперимент, тем точнее могут быть выводы. Наиболее благоприятной для исследования оказывается ситуация, когда можно уверенно утверждать о некоторых свойствах наблюдаемого эксперимента -- например, о наличии функциональной зависимости между наблюдаемыми величинами, о нормальности распределения, о его симметричности, о наличии у распределения плотности или о его дискретном характере, и т.д.
Итак, о (математической) статистике имеет смысл вспоминать, если
· имеется случайный эксперимент, свойства которого частично или полностью неизвестны,
· мы умеем воспроизводить этот эксперимент в одних и тех же условиях некоторое (а лучше -- какое угодно) число раз.
Список литературы
1. Баумоль У. Экономическая теория и исследование операций. - М.; Наука, 1999.
2. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1995.
3. Боровков А.А. Математическая статистика. М.: Наука, 1994.
4. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. - СПБ: Издательство «Лань», 2003.
5. Коршунов Д.А., Чернова Н.И. Сборник задач и упражнений по математической статистике. Новосибирск: Изд-во Института математики им. С.Л.Соболева СО РАН, 2001.
6. Пехелецкий И.Д. Математика: учебник для студентов. - М.: Академия, 2003.
7. Суходольский В.Г. Лекции по высшей математике для гуманитариев. - СПБ Издательство Санкт-петербургского государственного университета. 2003
8. Феллер В. Введение в теорию вероятностей и ее приложения. - М.: Мир, Т.2, 1984.
9. Харман Г., Современный факторный анализ. -- М.: Статистика, 1972.