Элективный курс по теме: "Сюжетные задачи"

дипломная работа

§3. Программа элективного курса

Пояснительная записка

Сюжетные задачи - это наиболее древний вид школьных задач. Они всегда широко использовались, и будут использоваться в обучении математике. Они помогают учащимся понять сущность и методику применения математического моделирования, сформировать общий подход к решению любых задач, однако в школьном курсе математики отводится недостаточно времени решению сюжетных (текстовых) задач. Это и определило необходимость в составлении данного курса.

Статистические данные анализа результатов проведения ЕГЭ с момента его существования говорят о том, что решаемость задания, содержащего текстовую задачу, составляет год от года чуть больше или меньше 30%. Такая ситуация позволяет сделать вывод, что большинство учащихся не в полной мере владеет техникой решения текстовых задач и не умеет за их часто нетрадиционной формулировкой увидеть типовые задания, которые были достаточно хорошо отработаны на уроках в рамках школьной программы. По этой причине возникла необходимость более глубокого изучения этого традиционного раздела элементарной математики.

Полный минимум знаний, необходимый для решения всех типов текстовых задач, формируется в течение первых девяти лет обучения учащихся в школе, поэтому представленный элективный курс «Текстовые задачи» рекомендуется вводить с 9-го класса. Хотя при творческом подходе учителя к его проведению, исключив пока ещё не изученные на уроках темы, можно ввести этот курс и раньше. Подобный подход возможен, так как каждая тема, за исключением первой, является вполне самостоятельной и не связана с другими. За счёт высвободившихся часов можно увеличить количество практических занятий по другим темам.

Данный элективный курс представляет возможность реализации интереса к выбранному профилю, создает условия для осознанного выбора профиля.

Цель курса:

Создание условий для:

· формирования у школьников общих подходов к решению сюжетных задач;

· овладения навыками моделирования, как одного из методов познания и решения сюжетных задач;

· формирование умений и навыков решения задач сюжетного содержания.

Задачи курса:

· обобщить виды задач, изученных ранее, и конкретизировать понятие сюжетных задач;

· определить методы моделирования учебной задачи;

· ознакомить учащихся с всевозможными подходами к решению сюжетных задач различного уровня сложности;

· помочь школьникам овладеть приемами исследовательской работы и методами решения задач.

Учебный процесс элективного курса предусматривает следующие методы и формы работы:

· изложение нового материала учителем в форме лекции;

· дифференцированный подход на практических занятиях: для всех тем курса подобраны задания различного уровня сложности, которые в зависимости от уровня усвоения материала учащимися будут им предложены;

· самостоятельная работа с учебной литературой;

· индивидуальные консультации.

Данный курс рассчитан на полгода, 14 учебных часов, по 2 часа в неделю, в течении одной четверти.

Содержание курса

В программу элективного курса включены следующие темы и ориентировочное время для их изучения

п/п

Тема

Количество
часов

1

Вводное занятие

1

2

Методы решения сюжетных задач

3

3

Задачи на физические процессы

2

4

Задачи на химические процессы

3

5

Задачи с экономическим содержанием

3

6

Итоговое занятие

1

Итого:

12

Методические рекомендации элективного курса «Сюжетные задачи»

Тема 1. Вводное занятие.

На вводном занятии рекомендуется:

· объяснить учащимся цели данного элективного курса;

· поставить необходимые задачи;

· рассказать кратко о том, что будет изучаться, выяснить всевозможное применение задач в жизнедеятельности человека (с помощью учащихся);

· объяснить, каким образом будут подводиться итоги изучения курса и оцениваться работа учащихся.

Тема 2. Методы решения сюжетных задач.

Сюжетные задачи многими людьми, окончившими школу, вспоминаются как самые трудные. Для того чтобы понять, в чем состоит сложность решения этих задач, необходимо проанализировать собственный опыт их решения.

В каждой сюжетной задаче можно выделить:

· числовые значения величин, которые называются данными, или известными (их должно быть не меньше двух);

· некоторую систему функциональных зависимостей в неявной форме, взаимно связывающих искомое с данными и данные между собой (словесный материал, указывающий на характер связей между данными и искомыми);

· требование или вопрос, на который надо найти ответ.

Существуют различные методы решения данного класса задач:

· арифметический метод;

Решить задачу арифметическим методом - значит найти ответ на требование задачи посредством выполнения арифметических действий над числами. Одну и ту же задачу можно решить различными арифметическими способами. Они отличаются друг от друга логикой рассуждений, выполняемых в процессе решения задачи. Выделяют два основных подвида арифметического метода решения:

ь составление пропорций по условию задачи и нахождение четвертого пропорционального;

ь получение числового выражения или последовательности числовых выражений и нахождение из значений.

· алгебраический метод;

Алгебраический метод обеспечивает общий подход, общий принцип в анализе и решении. Его отличие от арифметического метода прежде всего состоит в введении неизвестной величины и её специального обозначения.

Итак, при алгебраическом методе ответ на вопрос задачи находится в результате составления и решения уравнения. В зависимости от выбора неизвестного (неизвестных), для обозначения буквой (буквами), от хода рассуждений можно составить различные уравнения по одной и той же задаче. В этом случае можно говорить о различных алгебраических способах решения этой задачи.

Составление уравнения отличается от арифметического метода не только введением буквенных обозначений неизвестной величины, но и установление зависимостей между величинами задачи. Эти зависимости представлены здесь не в виде цепочки формул, каждое звено которой связано с выполнением предшествующих действий и все звенья которой объединяются лишь в конце, а сразу в виде уравнения, в котором фиксируются все существенные связи между известными и чаще неизвестными величинами. Это возможно благодаря особой функции «х», позволяющей замещать неизвестную величину особым символом и оперировать с ним.

При алгебраическом методе решения задачи важно не вычисление конкретных значений величин, а выявление и выражение основных зависимостей между явными и неявными значениями величин, входящих в условие задачи.

При алгебраическом методе решения текстовой задачи выполняются следующие этапы:

ь разработка математической модели;

ь поиск алгоритма решения;

ь вычисление и исследование.

· функционально-графический метод решения текстовых задач;

Функционально-графический метод решения сюжетных задач состоит в переводе условия задачи на язык функций и использовании свойств этих функций и свойств их графиков для решения задачи.

· геометрический метод;

Геометрический метод решения сюжетных задач основан на переводе условия задачи на язык геометрических величин и использовании метрических свойств геометрических фигур для ее решения.

В решении задач наиболее часто используются две разновидности этого метода:

ь метод одномерных диаграмм (изображение процесса изменения одной величины отрезками);

ь метод двумерных диаграмм (изображение связи нескольких величин с помощью планиметрических фигур).

Геометрический метод очень часто используется в комбинации с другими методами решения сюжетных задач как средство получения образа задачной ситуации или как средство получения дополнительных законов связи величин.

Тема 3. Задачи на физические процессы

Делись добром ;)