Коническая винтовая линия.
Такую линию описывает точка, которая движется по какой-либо образующей прямого кругового конуса, вращающегося вокруг своей оси так, что путь пройденный точкой по образующей все время равен углу поворота конуса (рис.7.10).
Проекция на ось конуса смещения точки вдоль образующей за один оборот называется шагом конической винтовой линии. Горизонтальной проекцией конической винтовой линии является спираль Архимеда - одна из замечательных плоских кривых линий. |
| |
| ||
а) модель | б) эпюр |
|
Рисунок 7.10 Коническая винтовая линия |
Поверхность. Формообразование поверхностей. Поверхности вращения. Винтовые поверхности. Линейчатые поверхности с плоскостью параллелизма (Поверхности Каталана). Поверхности параллельного переноса.
| ПОВЕРХНОСТЬ |
"Поверхность, одно из основных геометрических понятий. При логическом уточнении этого понятия в разных отделах геометрии ему придаётся различный смысл.
1) В школьном курсе геометрии рассматриваются плоскости, многогранники, а также некоторые кривые поверхности. Каждая из кривых П. определяется специальным способом, чаще всего как множество точек, удовлетворяющих некоторым условиям. Например, поверхность шара - множество точек, отстоящих на заданном расстоянии от данной точки. Понятие "Поверхность" лишь поясняется, а не определяется. Например, говорят, что поверхность есть граница тела или след движущейся линии. Сбег резьбы, фаски, проточки Для выполнения резьбы применяются различные специальные инструменты: плашки, метчики, фрезы, резцы. Фронтальный интерьер В рисунке фронтального интерьера луч зрения перпендикулярен плоскости одной из стен. Найдите реально в интерьере точку, в которой луч Вашего зрения перпендикулярен плоскости выбранной стены или главную точку. Тогда Ваш рисунок совпадет с тем что Вы видите в натуре. Задание плоскости прямыми, по которым эта плоскость пересекает плоскости проекций, называется заданием плоскости следами. Такое задание дает прямую связь с аналитическим ее заданием (непосредственно алгоритмом для ЭВМ), поэтому остановимся на этом более подробно.
2) Математически строгое определение поверхности основывается на понятиях топологии. При этом основным является понятие простой поверхности, которую можно представить как кусок плоскости, подвергнутый непрерывным деформациям (растяжениям, сжатиям и изгибаниям). ..."
*Большая советская энциклопедия.
Поверхности составляют широкое многообразие нелинейных фигур трехмерного пространства. Инженерная деятельность человека связана непосредственно с конструированием, расчетом и, изготовлением различных поверхностей. Большинство задач прикладной геометрии сводится к автоматизации конструирования, расчета и воспроизведения сложных технических поверхностей. Способы формообразования и отображения поверхностей, начертательной геометрии составляют основу инструментальной базы трехмерного моделирования современных графических редакторов. Выполнение графических работ Прямые уровня Начертательная геометрия
Рассматривая поверхности как непрерывное множество точек, между координатами которых может быть установлена зависимость, определяемая уравнением вида F(x,y,z)=0, можно выделить алгебраические поверхности (F(x,y,z)- многочлен n-ой степени) итрансцендентные (F(x,y,z)- трансцендентная функция).
Если алгебраическая поверхность описывается уравнением n-й степени, то поверхность считается поверхностью n-го порядка. Произвольно расположенная секущая плоскость пересекает поверхность по кривой того же порядка ( иногда распадающейся или мнимой), какой имеет исследуемая поверхность. Порядок поверхности может быть определен также числом точек ее пересечения с произвольной прямой, не принадлежащей целиком поверхности, считая все точки (действительные и мнимые).
В начертательной геометрии фигуры задаются графически, поэтому целесообразно поверхность рассматривать как совокупность всех последовательных положений некоторой перемещающейся в пространстве линии.
| Проецирование прямой Начертательная геометрия ОБРАЗОВАНИЕ И ЗАДАНИЕ ПОВЕРХНОСТИ НА ЧЕРТЕЖЕ. |
Поверхность можно рассматривать, как совокупность последовательных положений l1,l2… линии l, перемещающейся в пространстве по определенному закону (рис.8.1). В процессе образования поверхности линия l может оставаться неизменной или менять свою форму - изгибаться или деформироваться. Для наглядности изображения поверхности на эпюре Монжа закон перемещения линии l целесообразно задавать графически в одной линии или целого семейства линий (m, n, p...). Подвижную линию принято называть образующей, неподвижные -направляющими. Такой способ образования поверхности принято называть кинематическим.
| Примером такого способа могут служить все технологические процессы обработки металлов режущей кромкой, когда поверхность изделия несет на себе «отпечаток» режущей кромки резца, т.е. её поверхность можно рассматривать как множество, линий конгруэнтных профилю резца. По виду образующей различают поверхности линейчатые инелинейчатые, образующая первых – прямая линия, вторых – кривая. Линейчатые поверхности в свою очередь разделяют на так называемые развертывающие, которые можно без складок и разрывов развернуть на плоскость и неразвертывающиеся. Значительный класс поверхностей формируется движением окружности постоянного или переменного радиуса. Это так называемыециклические поверхности (рис.8.2). Если же группировать поверхности по закону движения образующей линии и производящей поверхности, то большинство встречающихся в технике поверхностей можно разделить на: Поверхности вращения; Винтовые поверхности; Поверхности с плоскостью параллелизма; Поверхности переноса. Особое место занимают такие нелинейные поверхности, образование которых, не подчинено ни какому закону. Оптимальную форму таких поверхностей определяют теми физическими условиями, в которых они работают и устанавливают ее форму экспериментально (поверхности лопастей турбин, обшивка каркасов морских судов и самолетов). Множество линий, заполняющих поверхность так, что через каждую точку поверхности проходит в общем случае одна линия этого множества, называется каркасом поверхности. Поверхность может быть задана и конечным множеством точек, которое принято называть точечным каркасом. Проекции каркаса могут быть построены, если задан определительповерхности – совокупность условий, задающих поверхность в пространстве и на чертеже. Различают две части определителя: геометрическую и алгоритмическую. Геометрическая часть определителя представляет собой набор постоянных геометрических элементов (точек, прямых, плоскостей и т.п.), которые могут и не входить в состав поверхности. Вторая часть – алгоритмическая (описательная) – содержит перечень операций, позволяющий реализовать переход от фигуры постоянных элементов к непрерывному каркасу. Например, циклическая поверхность, каркас которой состоит из окружностей (рис.8.3), может быть задан следующим образом: Геометрическая часть определителя: три направляющих l, m, n,ось i пучка плоскостей Алгоритмическая часть: выделяем из пучка плоскостей с осью iплоскость α; находим точки А, В, С, в которых α пересекает соответственно направляющие l, m, n. Строим окружность, определяемую тремя найденными точками. Переходим к следующей плоскости пучка и повторяем построение. | ||
| Рисунок 8.1. Поверхность образованная движением линии | ||
| |||
| Рисунок 8.2. Циклическая поверхность | ||
| |||
Рисунок 8.3. Образование циклической поверхности |
| ПОВЕРХНОСТИ ВРАЩЕНИЯ. |
Поверхности вращения – это поверхности созданные при вращении образующей m вокруг оси i (рис.8.4).
Геометрическая часть определителя состоит из двух линий: образующей m и оси i (рис 8.4.а).
Алгоритмическая часть включает две операции:
1. На образующей m выделяют ряд точек A, B, C, …F;
2. Каждую точку вращают вокруг оси i.
|
| |
а) эпюр |
| б) модель |
Рисунок 8.4. Образование поверхности вращения |
| Так создается каркас поверхности, состоящей из множества окружностей (рис.8.5), плоскости которых расположены перпендикулярно оси i. Эти окружности называются параллелями;наименьшая параллель называется горлом, наибольшая – экватором. Из закона образования поверхности вращения вытекают два основных свойства: 1. Плоскость перпендикулярная оси вращения, пересекает поверхность по окружности – параллели. 2. Плоскость, проходящая через ось вращения, пересекает поверхность по двум симметричным относительно оси линиям – меридианам. Плоскость проходящая через ось параллельно фронтальной плоскости проекций называется плоскостью главного меридиана, а линия, полученная в сечении, – главным меридианом. |
Рисунок 8.5 Поверхность вращения |
|
| |
| Рисунок 8.6. Образование сферы | Рисунок 8.7. Образование сфероида |
| Рассмотрим наиболее распространенные поверхности вращения с криволинейными образующими: Сфера – образуется вращением окружности вокруг её диаметра (рис.8.6). При сжатии или растяжении сферы она преобразуется вэллипсоиды, которые могут быть получены вращением эллипса вокруг одной из осей: если вращение вокруг большой оси то эллипсоид называется вытянутым (рис.8.8), если вокруг малой – сжатым илисфероидом (рис.8.7). Тор – поверхность тора формируется при вращении окружности вокруг оси, не проходящей через центр окружности (рис.8.9). Параболоид вращения – образуется при вращении параболы вокруг своей оси (рис.8.10). |
Рисунок 8.8. Образование вытянутого эллипсоида |
|
|
Рисунок 8.8. Тор |
Рисунок 8.10. Параболоид вращения |
|
|
а) однополостной | б) двуполостной |
Рисунок 8.11. Гиперболоид вращения |
Гиперболоид вращения – различают одно (рис.8.11а) и двух (рис.8.11б) полостной гиперболоиды вращения. Первый получается при вращении вокруг мнимой оси, а второй – вращением гиперболы вокруг действительной оси.
| ВИНТОВЫЕ ПОВЕРХНОСТИ. |
Винтовые поверхности образуются винтовым движением некоторой линии – образующей.
Под винтовым движением понимается совокупность двух движений: поступательного параллельно некоторой оси, и вращательного, вокруг той же оси.
| При этом поступательное и угловое перемещение находятся в определенной зависимости ∆h=k∆v, где ∆h – линейное перемещение за время ∆t, ∆v – угловое перемещение за то же время, k – коэффициент пропорциональности. Если k=Const, то шаг поверхности постоянный. Геометрическая часть определителя винтовой поверхности ни чем не отличается от поверхности вращения и состоит из двух линий: образующей m, и оси i (рис.8.12). Алгоритмическая часть: 1. На образующей m выделяют ряд точек А, В, С, … 2. Строят винтовые линии заданного шага и направления, по которым перемещаются заданные точки.
| |
Рисунок 8.12. Винтовая поверхность |
|
|
ЛИНЕЙЧАТЫЕ ПОВЕРХНОСТИ С ПЛОСКОСТЬЮ ПАРАЛЛЕЛИЗМА (ПОВЕРХНОСТИ КАТАЛАНА). |
| Поверхность с плоскостью параллелизма представляет собой множество прямых линий l (образующих), параллельных некоторой плоскости α (плоскости параллелизма) и пересекающих две данные направляющие m, n (рис. 8.13). В зависимости от формы направляющих образуются три частных вида поверхностей. Цилиндроид. Цилиндроидом называется поверхность, образованная движением прямолинейной образующей по двум направляющим кривым линиям, при этом образующая во всех положениях параллельна плоскости параллелизма (рис.8.13). Коноид. Коноидом называется поверхность, образованная движением прямолинейной образующей по двум направляющим, одна из которых кривая линия, а другая прямая, при этом образующая во всех положениях параллельна плоскости параллелизма (рис.8.14). |
Рисунок 8.13. Цилиндроид |
Гиперболический параболоид. Гиперболическим параболоидом или косой плоскостью называется поверхность, образованная движением прямолинейной образующей, параллельной плоскости параллелизма, по двум направляющим линиям – скрещивающимся прямым (рис.8.15).
|
|
Рисунок 8.14. Коноид | Рисунок. 8.15. Гиперболический параболоид |
|
ПОВЕРХНОСТИ ПАРАЛЛЕЛЬНОГО ПЕРЕНОСА. |
| Поверхностью параллельного переноса называется поверхность, образованная поступательным плоскопараллельным перемещением образующей - плоской кривой линии m по криволинейной направляющей n(рис.8.16). Геометрическая часть определителя состоит из двух кривых линий образующей - m и направляющей – n. Алгоритмическая часть определителя содержит перечень операций:
Наглядным примером плоскости параллельного переноса может служить скользящая опалубка, применяемая в строительстве. | |
Рисунок 8.16. Поверхность параллельного переноса |
|
Линия и точка, принадлежащие поверхности. Пересечение поверхности плоскостью. Конические сечения.
| ЛИНИЯ И ТОЧКА, ПРИНАДЛЕЖАЩИЕ ПОВЕРХНОСТИ |
Для определения принадлежности точки и линии поверхности рассмотрим следующие позиционные задачи:
Задача 1. Построение линии принадлежащей поверхности, если одна из проекций линии задана (рис. 8.17). Наружный диаметр трубной резьбы будет больше обозначенного на чертеже
Дано: 1.Поверхность Ф , заданная проекциями каркаса состоящих из образующих линий l и направляющей n. 2. Проекция линии m2, принадлежащей поверхности Ф.Угловой интерьер Словом "интерьер" обозначается внутренний вид помещения. В рисунке интерьера мы показываем и пол и потолок помещения. Проецирующие плоскости Примеры построения многогранных поверхностей |
| |
| ||
а) модель Выполнение графических работ Фронтально проецирующая прямая Начертательная геометрия |
| б) эпюр |
Рисунок 8.17. Линия на поверхности |
Алгоритм решения задачи:
1. Находим точки 12, 22, 32, 42 пересечения проекции линии m2 с проекцией каркаса поверхности, т.е. соответственно с проекциями линий l12, l22, l32, l42 .
2. По линиям связи находим проекции точек 11, 21, 31, 41, как точки лежащие на проекциях образующих каркаса соответственно l11, l21, l31, l41 и определяющих положение проекции линии т1 на поверхности Ф.
Задача 2. По одной проекции точки, принадлежащей поверхности, найти точку на поверхности (рис. 8.18).
Дано: 1. Поверхность Ф , заданная проекциями каркаса состоящего из образующих l и направляющих n. 2. Проекция точки К1, принадлежащей поверхности Ф. |
| |
| ||
а) модель |
| б) эпюр |
Рисунок 8.18. Точка на поверхности Прямая и точка Начертательная геометрия |
Алгоритм решения задачи:
1. Через заданную проекцию точки К1 проводим одноименную проекцию произвольной вспомогательной линии принадлежащей поверхности т1.
2. Находим точки 11, 21, 31, 41, пересечения проекции линии m1 с проекцией каркаса поверхности, т.е. соответственно с проекциями линий l11, l21, l31, l41.
3. По линиям связи находим проекции точек 12, 22, 32, 42 как точки лежащие на проекциях образующих каркаса соответственноl12, l22, l32, l42 и определяющих положение проекции линии т2 на поверхности Ф.
4. По линии связи находим положение проекции точки К2, как точку принадлежащую вспомогательной линии т2.
| ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ |
В зависимости от положения плоскости по отношению к плоскостям проекций, сложность решения позиционной задачи, по определению линии пересечения ее с поверхностью существенно меняется. Наиболее простым представляется случай, когда плоскость проецирующая. Рассмотрим решение задачи по определению линии пересечения сферы фронтально - проецирующей плоскостью α (рис.8.19).
|
| |
а) модель |
| б) эпюр |
Рисунок 8.19. Пересечение сферы фронтально - проецирующей плоскостью |
Окружность, по которой плоскость α пересекает сферу, проецируется на плоскости П1 и П3 в виде эллипса, а на плоскость П2 в прямую линию ограниченную очерком сферы.
Охарактеризуем выбранные для построения точки:
1, 8- две вершины эллипса, определяющие положение малой оси, их фронтальные проекции определяют пересечение следа плоскости α с очерком сферы, а горизонтальные проекции являются соответственно высшей и низшей точками сечения
2, 3- фронтальные проекции этих точек лежит на вертикальной оси сферы, а профильные проекции будут лежать на очерке сферы и определять зону видимости при построении эллипса на П3.
4, 5- две вершины эллипса, определяющие положение большой оси эллипса, положение их фронтальной проекции определяет перпендикуляр, опущенный из центра сферы к следу плоскости α.
6, 7- Фронтальные проекции этих точек лежат на горизонтальной оси сферы, т.е. принадлежат экватору сферы, их горизонтальная проекция лежит на очерке сферы и определяет зону видимости при построении эллипса на П1.
Линия пересечения плоскости α и сферы на фронтальной плоскости проекций совпадает со следом плоскости на ней отмечаем точки12…82. Для нахождения горизонтальных проекций этих точек в общем случае используется метод вспомогательных секущих плоскостей (β- горизонтальные плоскости уровня) . Например, через точки 22, 32 проведем след плоскости β12 , на горизонтальной плоскости проекций линией пересечения плоскости β1 и сферы будет окружность m11 , а точки 21 и 31 лежат на этой окружности по линии связи ( в данном случае осевой линии). Таким образом находятся все точки, кроме 11 и 81 , которые ввиду своего положения на очерке фронтальной проекции сферы будут принадлежать горизонтальной осевой линии на плоскости П1. Построенные точки 11…81 соединим плавной кривой линией с учетом видимости.
Задача, когда сферу пересекает плоскость общего положения, например заданная двумя пересекающимися прямыми α(h∩f) решается следующим образом:
| |
| Рисунок 8.20. Пересечение сферы плоскостью общего положения |
1. Произведем замену плоскостей проекций таким образом, чтобы плоскость α стала проецирующей, т.е. переведем плоскость общего положения в частное. h – горизонталь, f- фронталь, чтобы перевести плоскость α в положение проецирующей плоскости необходимо выбрать новую плоскость проекций, либо перпендикулярно горизонтальной проекции горизонтали h1, либо перпендикулярно фронтальной проекции фронталь – f2 (рис.8.20).
2. Дальнейшее решение аналогично предыдущей задаче.
Рассмотрим еще один способ решения позиционной задачи по определению линии, пересечения поверхности вращения и плоскости общего положения, заданной двумя пересекающимися прямыми α(h∩f) (рис.8.21).
|
| |
а) модель |
| б) эпюр |
Рисунок 8.21. Пересечение параболоида вращения плоскостью общего положения |
Сечение поверхности Ф плоскостью α(h∩f) и проекции этого сечения на плоскость, перпендикулярную оси i, являются кривыми, имеющими ось симметрии. Для доказательства этого утверждения проведем вспомогательную плоскость β, перпендикулярную оси i. Вспомогательная плоскость пересечет заданную поверхность по параллели p, фронтальная проекция которой p2, совпадает со следом плоскостиβ2, а горизонтальная проекция p1- является окружностью. Линией пересечения вспомогательной плоскости с заданной плоскостью α(h∩f) является горизонталь h1.
Параллель p и горизонталь h1, находясь в одной плоскости β, пересекаются в точках 1 и 2, которые принадлежат искомой линии. Полученные точки симметричны друг другу относительно плоскости σ, перпендикулярной хорде 1-2 и проходящей через ее середину. Заметим, что плоскость σ, являясь множеством точек, равноудаленных от концов хорды 1 - 2, пройдет через ось i поверхности вращения, все точки которой также равноудалены от точек 1 и 2.
Очевидно, что для любой другой пары точек, расположенных на концах хорд других окружностей (но параллельных хорде 1-2), плоскостьσ будет также являться плоскостью симметрии. Следовательно, кривая сечения поверхности вращения плоскостью α представляет собой кривую симметричную, осью симметрии которой служит линия пересечения плоскостей α и σ – прямая, пересекающая поверхность в точках 3 и4 (линия наибольшего ската плоскости α проходящая через ось поверхности вращения).
Таким образом, используя вспомогательные горизонтальные секущие плоскости можно получить необходимое множество точек для построения линии пересечения плоскости α и поверхности Ф, которой является эллипс. Поэтому для более точного построения необходимо учитывать точки, определяющие положение осей эллипса (3,4,5 и 6)
Однако, если не учитывать характерные точки, определяющие границу зоны видимости линии пересечения и высшую и низшую точки этой линии, построение будет неточным.
Точки, определяющие зону видимости- 7 и 8, расположены на главном меридиане поверхности. Для построения их, через главный меридиан проведем вспомогательную секущую плоскость γ, параллельную фронтальной плоскости проекций. Плоскость γ пересекает плоскостьα по фронтали f1, которая, в свою очередь, находясь в одной плоскости с главным меридианом, пересекается с ним в искомых точках 7 и 8.
Высшая и низшая точки сечения - 3 и 4 находятся на линии наибольшего ската плоскости α, проходящей через ось поверхности Ф т.е. на прямой s. Эту прямую и меридиан поверхности, плоскость которого совпадает с прямой s, повернем вокруг оси i до положения s1, когда прямаяs и плоскость меридиана окажутся параллельными П2. Отметим при этом, что точка К пересечения прямой s и осью i остается неподвижной, а вращаемый меридиан в итоге совместится с главным меридианом- очерком фронтальной проекции поверхности вращения. Отметим точки пересечения фронтальной проекции главного меридиана и повернутой прямой. Возвращая обратным поворотом прямую s с найденными точками в исходное положение, находим положение точек 3 и 4.
Соединив, полученные точки кривой с учетом видимости получим линию пересечения плоскости α с поверхностью Ф.
| КОНИЧЕСКИЕ СЕЧЕНИЯ. |
Рисунок 8.22. Конические сечения | В зависимости от положения секущей плоскости линиями сечения конической поверхности могут быть (рис.8.22): эллипс, парабола, гипербола, а в частных случаях: окружность, прямая, две пересекающиеся прямые и точка. Если плоскость Ф пересекает все образующие поверхности конуса вращения, т.е. если φ>α, то линией сечения является эллипс (рис.8.23)В этом случае секущая плоскость не параллельна ни одной из образующих поверхности конуса. В частном случае (φ=900) такая плоскость пересекает поверхность конуса по окружности (рис.8.24); и сечение вырождается в точку, если плоскость проходит через вершину конуса. Если плоскость Ф параллельна одной образующей поверхности конуса, т.е. φ=α, то линией пересечения является парабола (рис.8.25). В частном случае (плоскость является касательной к поверхности конуса) сечение вырождается в прямую. |
|
|
Рисунок 8.23. Эллипс | Рисунок 8.24. Окружность |
|
|
Рисунок 8.25. Парабола | Рисунок 8.26. Гипербола |
| Если плоскость Ф параллельна двум образующим поверхности конуса (в частном случае параллельна оси конуса), т.е. φ<α, то линией сечения является гипербола(рис.8.26). В случае прохождения плоскости через вершину конической поверхности фигурой сечения могут быть сами образующие, т.е. гипербола вырождается в две пересекающие прямые (рис.8.27). |
Рисунок 8.27. Пересекающиеся прямые
|
|
Лекция №8 часть 3 Метод вспомогательных секущих плоскостей. Метод вспомогательных секущих сфер. Частные случаи пересечения поверхностей второго порядка.
| ПЕРЕСЕЧЕНИЕ ЛИНИИ С ПОВЕРХНОСТЬЮ |
| В общем случае для графического определения точек пересечения линии с поверхностью (рис.8.28) необходимо выполнить ряд геометрических построений, описываемых следующим алгоритмом: Винтом называется резьбовой стержень, на одном конце которого имеется головка.Шурупы ввертываются в дерево и некоторые полимерные материалы (пластмассы). 1. Заключаем линию l в некоторую вспомогательную поверхность Δ; 1. Строим линию m пересечения данной поверхности Ф и вспомогательной поверхностиΔ; Рисунок стоящего стула Все задания раздела "перспектива интерьера", кроме последнего, будут выполняться как конструктивный рисунок. В материалах занятия 8 из раздела "конструктивный рисунок" было упомянуто об условностях в построении изображения в перспективе: принято считать что точка зрения одна и что она зафиксирована. 2. Определяем искомую точку К пересечения линии l и m (точка может быть не единственная). В качестве вспомогательной поверхности целесообразно использовать проецирующую цилиндрическую поверхность, направляющей которой должна служить заданная линия, а –прямолинейными образующими – проецирующие прямые. Выполнение графических работВзаимное расположение точек Начертательная геометрия Пример: Определить точки пересечения прямой линии с поверхностью конуса вращения и определить видимость прямой по отношению к конусу. Если в качестве вспомогательной секущей плоскости можно выбрать горизонтально проецирующую или фронтально проецирующую плоскости, то в сечении получатся соответственно гипербола (рис.8.29а) или эллипс (рис.8.29б). Построение кривых линий значительно усложняет задачу. | ||
| Рисунок 8.28. Пересечение линии с поверхностью |
|
|
а) горизонтально проецирующая плоскость | б) фронтально проецирующая плоскость |
Рисунок 8.29 Пересечение прямой линии с конусом (вспомогательная секущая плоскость- проецирующая плоскость ) Разьемные соединения Каждая машина состоит из отдельных деталей, соединенных дpуг с дpугом неподвижно или находящихся в относительном движении. Соединения деталей машин могут быть pазъемными и неpазъемными
|
|
| |||||
|
|
| а) модель |
| б) эпюр | |
Рисунок 8.30. Пересечение прямой линии с конусом (вспомогательная секущая плоскость-плоскость общего положения) |
Поэтому в качестве вспомогательной секущей плоскости целесообразно выбрать такую плоскость, которая бы включала прямую l и пересекала конус по образующим (рис.8.30). Очевидно, что такая плоскость определяется прямой l и точкой S- вершиной конуса. Пусть основание конуса лежит в горизонтальной плоскости проекций, тогда линия пересечения вспомогательной секущей плоскости и горизонтальной плоскости проекций ВС пересекает основание конуса в точках D и F. Таким образом в сечении конуса вспомогательной секущей плоскостью получится треугольник DFS. Так как полученный треугольник и прямая l лежат в одной плоскости, точки их пересечения Ки Ми есть точки пересечения прямой с конусом.
| ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ |
Линией пересечения двух поверхностей является множество точек, общих для данных поверхностей. Из этого множества выделяют характерные (опорные, или главные) точки, с которых следует начинать построение этой линии. Они позволяют увидеть, в каких границах можно изменять положение вспомогательных секущих поверхностей для определения остальных точек.
К таким точкам относятся: экстремальные точки- верхняя и нижняя точки относительно той или иной плоскости проекций; точки, расположенные на очерковых образующих некоторых поверхностей точки границы зоны видимости и т.д.
Следует имеет в виду, что линия пересечения двух поверхностей в проекциях всегда располагается в пределах контура наложения проекций двух пересекающихся поверхностей.
Иногда целесообразно воспользоваться преобразованием чертежа, чтобы представить пересекающиеся поверхности (или одну из них) в частном положении.
Для определения этих точек часто пользуются вспомогательными секущими поверхностями. Поверхности-посредники пересекают данные поверхности по линиям, которые, в свою очередь, пересекаются в точках линии пересечения данных поверхностей.
Секущие поверхности-посредники выбираются так, чтобы они, пересекаясь с данными поверхностями, давали простые для построения линии, например прямые и окружности.
Из общей схемы построения линии пересечения поверхностей выделяют два основных метода - метод секущих плоскостей и методсекущих сфер.
В общем случае решение задачи по построении линии пересечения двух поверхностей может быть сведено к рассмотренным ранее задачам по определению:
1. Точек пересечения линии с поверхностью;
2. Линии пересечения плоскости и поверхности;
3. Комбинации первой и второй задачи.
| МЕТОД ВСПОМОГАТЕЛЬНЫХ СЕКУЩИХ ПЛОСКОСТЕЙ. |
Вспомогательные секущие плоскости чаще всего выбирают проецирующими и параллельными одной из плоскостей проекций - плоскостями уровня.
Этот способ рекомендуется применять, если сечения заданных поверхностей одной и той же плоскостью являются прямыми линиями или окружностями. Такая возможность существует в трех случаях:
1. Если образующие (окружности) расположены в общих плоскостях уровня;
2. Если в общих плоскостях уровня оказываются прямолинейные образующие линейчатой поверхности и окружности циклической;
3. Линейчатые каркасы заданных поверхностей принадлежат общим плоскостям уровня или пучкам плоскостей общего положения.
Пример 1: Рассмотрим построение линии пересечения треугольной призмы с конусом (рис.8.31) . Пусть ось вращения конуса перпендикулярна плоскости П1, а грани призмы перпендикулярны плоскости П2. В этом случае призму можно рассматривать, как три плоскости α, β, γ, проходящие через ее грани, а задача сводится к нахождению линий пересечения этих плоскостей с конусом. При этом в соответствии с характерными сечениями конуса известно, что плоскость α пересекает конус по окружности параллельной П1, β- по гиперболе параллельнойП3, а γ- по эллипсу. На плоскость П2 линии пересечения от всех плоскостей проецируются в прямые, совпадающие со следами плоскостей α, β, и γ. Для построения проекций этих линий на плоскости П1 и П3отметим характерные точки на уже имеющейся фронтальной проекции линий пересечения: |
| |
а) модель | ||
| ||
| б) эпюр | |
Рисунок 8.31. Пересечение конуса и призмы |
Точки 12 и 62 – пересечения плоскости γ с очерком проекции конуса на плоскость П2 (главным меридианом), эти точки определяют положение большой оси эллипса, кроме того точка 12 –проекция точки вершины гиперболы и одновременно принадлежит конусу (лежит на очерке фронтальной проекции конуса) и ребру призмы (линии пересечения плоскостей α и β), а точка 62- проекция точки, одновременно принадлежащей конусу и ребру призмы (линии пересечения плоскостей α и γ); точки 2, 3, 7 и 8 – характерны тем, что их профильные проекции лежат на очерке проекции конуса; 42, 52- точки, лежащие на середине отрезка 1262 (большой оси эллипса) и определяют положение малой оси эллипса; 9,10 – точки одновременно принадлежащие конусу и ребру призмы (образованному пересечением плоскостей α и β).
Рассмотрим последовательность нахождения проекций точек 4 и 5. Через фронтальные проекции этих точек проведем вспомогательную секущую плоскость φ. Эта плоскость пересекает конус по параллели p, а грань призмы по прямой линии m, параллельной ребру. На горизонтальной плоскости проекций пересечение p 1 и m 1 определяют положение точек 41 и 51. Для точного построения кривых линий пересечения поверхностей обозначенных точек не достаточно. После нахождения проекций всех точек их необходимо соединить с учетом видимости.
Пример 2: Пересечение сферы и цилиндра (рис.8.32).В данном примере вспомогательные плоскости уровня могут быть параллельными плоскостям П2 и П1. В первом случае фронтальные плоскости пересекают сферу по окружности, а цилиндр по прямолинейным образующим. Одна из таких плоскостей α пересекается с поверхностями по дуге окружности a и прямой линии b. Точка 1 пересечения дуги окружности а и прямой b принадлежат искомой кривой. |
| |
| ||
а) модель |
| б) эпюр |
Рисунок 8.32. Пересечение полусферы и эллиптического цилиндра |
С помощью вспомогательной секущей плоскости (плоскости главного фронтального меридиана полусферы) найдены точки 2 и 3, как точки пересечения главного фронтального меридиана полусферы - дуги окружности с с линиями d и g. Плоскость - плоскость главного фронтального меридиана цилиндра, пересекает полусферу по дуге окружности - k которая в свою очередь пересекаясь с фронтальным меридианом цилиндра l и m определяет положение точек 4 и 5. Аналогично, с помощью плоскости найдены точки 6 и 7.
Точка 8 найдена с помощью фронтально проецирующей плоскости параллельной горизонтальной плоскости проекций, которая пересекает полусферу по окружности - экватору h, а цилиндр по окружности основания s.
Характерными точками, в данном случае, являются точки 1- 5 и 8, лежащие на очерках проекций поверхностей. Кроме того, точки 1 и 8 определяют границу зоны видимости кривой на плоскость П1, а точки 4 и 5 – границу зоны видимости на плоскость П2.
| МЕТОД ВСПОМОГАТЕЛЬНЫХ СЕКУЩИХ СФЕР. |
При определении линии пересечения двух поверхностей вращения, при их особом взаимном расположении, не всегда рационально применять вспомогательные секущие плоскости. В некоторых случаях применяют метод вспомогательных секущих сфер – концентрических или эксцентрических.
Концентрические сферические посредники применяются при определении линии пересечения двух поверхностей вращения с пересекающимися осями. Каждая из этих поверхностей имеет семейство окружностей, являющихся линиями сечения их концентрическими сферами. Применению метода концентрических сфер должно предшествовать такое преобразование чертежа в результате которого оси обеих поверхностей должны быть расположены параллельно одной и той же плоскости проекций (рис.8.33) или одна из осей становиться проецирующей прямой, а вторая - линией уровня (рис.34). |
| ||||
| |||||
|
|
| а) модель |
| б) эпюр |
Рисунок 8.33. Пересечение поверхностей вращения, оси которых параллельны фронтальной плоскости проекций. |
Оси поверхностей G и Q параллельны фронтальной плоскости проекций и пересекаются в точки А (рис.8.33). Эта точка принимается за центр всех вспомогательных концентрических сфер. Каждая из концентрических сфер пересекает поверхности по окружностям - параллелям (а, b, c, d, n), фронтальные проекции которых являются прямыми линиями (а2, b2, c2, d2, n2). Проекции точек 12, 22, 32, 42, 52 и 62 пересечения проекций параллелей принадлежат проекции искомой линии пересечения поверхностей. Пересечение главных меридианов определяет крайние точки 7 и 8.
| Для точного построения линии пересечения поверхностей необходимо найти точки 9 и 10, которые определяют границу зоны видимости линии пересечения поверхностей на горизонтальной проекции. Для этой цели использовалась вспомогательная секущая плоскость которая пересекает поверхность Q по линии m, а поверхность G по образующим, горизонтальные проекции которых пересекаясь определяют положение искомых точек. Соединив найденные точки 1...10 с учетом видимости получим линию пересечения поверхностей. Вторым примером использования в качестве вспомогательных поверхностей посредников концентрических сфер рассмотрим при определении линии пересечения поверхностей предложенных на рисунке 8.34. Оси поверхностей вращения G и Q пересекаются в точкиА , при этом ось поверхности Q - фронтально проецирующая прямая, а ось поверхности G - горизонталь. Точка А принимается за центр всех вспомогательных концентрических сфер. Точки 1 и 2 линии пересечения построены с помощью сферы радиуса R. Эта сфера пересекает поверхность Q по окружности а, а поверхность G по окружности в, которая показана только на горизонтальной проекции. Пересечение горизонтальных проекций окружностей а1 и в1 определяют проекции 11 и 21 точек линии пересечения. Их фронтальные проекции 12 и 22 построены на а2пересечении с линиями связи. Аналогично найдены точки 3 и 4. Для нахождения точек 5 и 6 определяющих границу зоны видимости на горизонтальной проекции использовалась вспомогательная секущая плоскость , которая пересекает поверхностьQ по окружность n, а коническую поверхность G по треугольнику определяющему ее очерк на горизонтальной проекции. Точки 7 и 8 находятся на границе зоны видимости фронтальной проекции, для их нахождения используется вспомогательная секущая плоскость . Соединив найденные точки 1...8 с учетом видимости получим линию пересечения поверхностей G и Q. | |
| Рисунок 8.34. Пересечение поверхностей вращения, ось одной - горизонтально проецирующая прямая, а второй - горизонталь |
Эксцентрические сферические посредники применяются при определении точек линии пересечения поверхностей вращения с поверхностью несущей на себе непрерывное множество окружностей. Обе поверхности должны иметь общую плоскость симметрии. Вспомогательные эксцентрические сферы пересекаются с данными поверхностями по окружностям. |
| ||||
| |||||
|
|
| а) модель |
| б) эпюр |
Рисунок 8.35. Пересечение конуса и сферы |
Определения линии пересечения конуса и сферы применение эксцентричных сфер, как поверхностей - посредников. Центры сфер - точки расположены на оси конуса. Сфера пересекает конус и сферу по окружностям , которые пересекаются в двух точках, принадлежащих искомой линии пересечения (рис.8.35а).
Верхняя и нижняя точки линии пересечения найдены с помощью вспомогательной секущей плоскости - плоскости главного фронтального меридиана, пересекающая конус и сферу по треугольнику и окружности, являющимися очерками поверхностей на фронтальной плоскости проекций.
Точки определяющие границу зоны видимости линии пересечения на горизонтальной плоскости проекций, найдены с помощью вспомогательной секущей плоскости - горизонтальной плоскости уровня, пересекающей сферу по экватору - окружности являющейся очерком шара на горизонтальной проекции, а конус по окружности - параллели.
Найденные с помощью вспомогательных поверхностей посредников точки определяют линию пересечения конуса и шара.
Рассмотрим на примере определения линии пересечения конуса Q и сферы G (рис.8.35б) применение эксцентричных сфер, как поверхностей - посредников. Центры сфер - точки А1, А2 и А3 расположены на оси конуса. Сфера радиуса R1 с центром в точке А1 пересекает конус и сферу по окружностям аи в, которые пересекаются в точках 1 и 2, принадлежащих искомой линии пересечения. С помощью сферы R2 с центром А2 исферы R3 с центром А3 определено положение точек 3, 4 и 5,6 соответственно. Точки 7 и 8 найдены с помощью вспомогательной секущей плоскости (плоскости фронтального меридиана), пересекающая конус и сферу по главном фронтальном меридианам k и l. Точки 9 и10, определяющие границу зоны видимости линии пересечения на горизонтальной плоскости проекций, найдены с помощью вспомогательной секущей плоскости (горизонтальной плоскости уровня), пересекающей сферу G по экватору s, а конус Q по окружности p. Найденные с помощью вспомогательных поверхностей посредников точки 1...10 определяют линию пересечения конуса и шара.
| ЧАСТНЫЕ СЛУЧАИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯДКА |
Поверхностью второго порядка называется множество точек пространства, декартовы координаты, которых удовлетворяют алгебраическому уравнению второй степени.
Две поверхности второго порядка в общем случае пересекаются по пространственной линии четвертого порядка, которую называютбиквадратной кривой.
В некоторых случаях биквадратная кривая распадается на две плоские кривые второго порядка, причем одна из них может быть мнимой.
Опуская доказательства, приведем некоторые теоремы и примеры, иллюстрирующие их применение.
Теорема 1. Если две поверхности второго порядка пересекаются по одной плоской кривой, то существует и другая плоская кривая, по которой они пересекаются.
Рассмотрим пример, к которому приложима теорема.
Фронтальные проекции 2 сферы и 2 эллиптического цилиндра , имеющих общую окружность m(m2) с центром О(О2) (рис.8.36).
|
| ||
|
| а) модель | б) эпюр |
Рисунок 8.36. Пересечение сферы и эллиптического цилиндра |
Плоскость σ, определяемая центром сферы С и осью i цилиндра, является плоскостью симметрии заданных поверхностей, и параллельна фронтальной плоскости проекций.
Общая окружность радиуса r – это одна из плоских кривых второго порядка распавшейся линии пересечения. Остается построить вторую кривую, плоскость α которой должна быть в условиях данного примера перпендикулярна плоскости симметрии σ, а следовательно и П2. Вторая линия пересечения (окружность) проецируется на П2 в виде отрезка прямой n2. Для ее построения следует воспользоваться точками А2 и В2, принадлежащими очеркам заданных поверхностей.
Теорема 2.(о двойном касании). Если две поверхности второго порядка имеют касание в двух точках А и В, то линия их пересечения распадается на две плоские кривые второго порядка, плоскость которых проходит через отрезок АВ, соединяющий точки касания.
|
| ||
|
| а) модель | б) эпюр |
Рисунок 8.37 Пересечение сферы и эллиптического цилиндра имеющих две точки касания |
Например, по двум окружностям m и n пересекается сфера и эллиптический цилиндр (рис.8.37). Точки касания и касательные плоскости обозначены соответственно через А, В, α, β. Окружности, на которые распалась линия пересечения поверхностей, расположены во фронтально- проецирующих плоскостях γ и δ.
Теорема 3. (теорема Г. Монжа). Если две поверхности второго порядка описаны около третьей или вписаны в нее, то линия их пересечения распадается на две плоские кривые второго порядка. Плоскости этих кривых проходят через прямую, соединяющую точки линий касания.
|
| ||
|
| а) модель | б) эпюр |
Рисунок 8.38. Пересечение конуса и цилиндра имеющих общую вписанную сферу |
В соответствии с этой теоремой линия пересечения конуса Σ и цилиндра (рис.8.38), описанных около сферы , будут плоскими кривыми – эллипсами (расположенными в плоскостях и ), фронтальные проекции которых изображаются прямыми А2В2 и С2Д2,
Теорема Монжа находит эффективное применение при конструировании трубопроводов.
Теорема 4. Если две поверхности второго порядка имеют общую плоскость симметрии, то линия их пересечения проецируется на эту плоскость в виде кривой второго порядка.
|
|
а) модель | б) эпюр |
Рисунок 8.39. Пересечение сферы и цилиндра |
Плоскость симметрии определена осью симметрии цилиндра и центром сферы (рис.8.39). Плоскости принадлежат и симметричные сами себе точки A, B, C иD линий пересечения. Проекция же линий на фронтальную плоскость имеет форму параболы m2 и аналитически описывается формулой параболы.
|
Лекция №8 часть 4
Развертка поверхности. Основные свойства развертки. Развертка поверхности многогранников. Развертка цилиндрической поверхности. Развертка конической поверхности. Задание касательной плоскости на эпюре Монжа.Поверхность касательная к поверхности.
| РАЗВЕРТКА ПОВЕРХНОСТИ |
Разверткой называется плоская фигура, полученная при совмещении поверхности геометрического тела с одной плоскостью (без наложения граней или иных элементов поверхности друг на друга).
Приступая к изучению развертки поверхности, последнюю целесообразно рассматривать как гибкую, нерастяжимую пленку. Некоторые из представленных таким образом поверхностей можно путем изгибания совместить с плоскостью. При этом, если отсек поверхности может быть совмещен с плоскостью без разрывов и склеивания, то такую поверхность называют развертывающейся, а полученную плоскую фигуру – ееразверткой. Трубная цилиндрическая резьба применяется для соединения труб, где требуется герметичность. Профиль резьбы — равнобедренный треугольник с углом при вершине
| ОСНОВНЫЕ СВОЙСТВА РАЗВЕРТКИ |
Длины двух соответствующих линий поверхности и ее развертки равны между собой;
Угол между линиями на поверхности равен углу между соответствующими им линиями на развертке;
Прямой на поверхности соответствует также прямая на развертке;
Параллельным прямым на поверхности соответствуют также параллельные прямые на развертке;
Если линии, принадлежащей поверхности и соединяющей две точки поверхности, соответствует прямая на развертке, то эта линия является геодезической. Рисунок опрокинутого стула Если все построения в рисунке стоящего стула укладывались в простую схему, то на этот раз эта схема не работает. Выполнение графических работ Начертательная геометрия Типы задач
| РАЗВЕРТКА ПОВЕРХНОСТИ МНОГОГРАННИКОВ |
Разверткой многогранной поверхности называется плоская фигура, получаемая последовательным совмещением всех граней поверхности с плоскостью.
Так как все грани многогранной поверхности изображаются на развертке в натуральную величину, построение ее сводится к определению величины отдельных граней поверхности – плоских многоугольников.
Существует три способа построения развертки многогранных поверхностей:
1. Способ нормального сечения;
2. Способ раскатки;
3. Способ треугольника.
Пример 1. Развертка пирамиды (рис. 8.40). Оформление чертежей Сборочный чертеж
|
Рисунок 8.40. Пирамида и её развертка |
При построении развертки пирамида применяется способ треугольника. Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников – граней пирамиды и многоугольника - основания. Поэтому построение развертки пирамиды сводится к определению натуральной величины основания и граней пирамиды. Грани пирамиды можно построить по трем сторонам треугольников, их образующих. Для этого необходимо знать натуральную величину ребер и сторон основания.
| |
| Рисунок 8.41. Определение истинной величины основания и ребер пирамиды Эскиз детали. Тpебования к эскизу В условиях пpоизводства и пpи пpоектиpовании иногда возникает необходимость в чеpтежах вpеменного или pазового пользования, получивших название эскизов. Эскиз - чеpтеж вpеменного хаpактеpа, выполненный, как пpавило, от pуки (без пpименения чеpтежных инстpументов), на любой бумаге, без соблюдения масштаба, но с сохpанением пpопоpциональности элементов детали, а также в соответствии со всеми пpавилами и условностями, установленными стандартами. |
| Алгоритм построения можно сформулировать следующим образом (рис. 8.41):
Точки, расположенные внутри контура развертки, находят во взаимно однозначном соответствии с точками поверхности многогранника. Но каждой точке тех ребер, по которым многогранник разрезан, на развертке соответствуют две точки, принадлежащие контуру развертки. Примером первой точки на рисунках служит точка К0 и КSАD, а иллюстрацией второго случая являются точки М0 и М0*. Для определения точки К0 на развертке пришлось по ее ортогональным проекциям найти длины отрезков АМ ( метод замены плоскостей проекций) и SК (метод вращения). Эти отрезки были использованы затем при построении на развертке сначала прямой S0М0 и, наконец, точки К0. | ||
| Рисунок 8.42. Построение развертки пирамиды |
Пример 2. Развертка призмы (рис.8.43).
| |
| Рисунок 8.43. Развертка призмы способом нормального сечения |
В общем случае развертка призмы выполняется следующим образом. Преобразуют эпюр так, чтобы ребра призмы стали параллельны новой плоскости проекций. Тогда на эту плоскость ребра проецируются в натуральную величину.
Пересекая призму вспомогательной плоскостью α, перпендикулярной ее боковым ребрам (способ нормального сечения), строят проекции фигуры нормального сечения – треугольника 1, 2, 3, а затем определяют истинную величину этого сечения. На примере она найдена методом вращения.
В дальнейшем строям отрезок 10-10*, равный периметру нормального сечения. Через точки 10, 20, 30 и 10* проводят прямые, перпендикулярные 10-10*, на которых откладывают соответствующие отрезки боковых ребер призмы, беря их с новой фронтальной проекции. Так, на перпендикуляре, проходящем через точку 10, отложены отрезки 10D0=14D4 и 10А0=14А4.
Соединив концы отложенных отрезков, получают развертку боковой поверхности призмы. Затем достраивают основание.
Пример 3. Развертка призмы, частный случай, когда основание призмы на одну из плоскостей проекций проецируется в натуральную величину (рис. 8.44).
| |
| Рисунок 8.44. Развертка призмы способом раскатки |
Развертка боковой поверхности такой призмы осуществляется способом раскатки. Этот способ заключается в следующем. Сначала, как и в предыдущем примере, преобразуют эпюр так, чтобы боковые ребра призмы стали параллельны одной из плоскостей проекций.
Затем новую проекцию призмы вращают вокруг ребра С4F4 до тех пор пока грань ACDF не станет параллельной плоскости П4. При этом положение ребра С4F4 остается неизменным, а точки принадлежащие ребру AD перемещаются по окружностям, радиус которых определяется натуральной величиной отрезков AC и DF (так как основания призмы параллельны П1 то на эту плоскость проекций они проецируются без искажения т.е. R=A1C1=D1F1), расположенных в плоскостях, перпендикулярных ребру С4F4. Таким образом, траектории движения точек A и Dна плоскость П4 проецируются в прямые, перпендикулярные ребру С4F4.
Когда грань ACDF станет параллельна плоскости П4, она проецируется на неё без искажения т.е. вершины A и D окажутся удаленными от неподвижных вершин C и F на расстояние, равное натуральной величине отрезков AC и DF. Таким образом, засекая перпендикуляры, по которым перемещаются точки A4 и D4 дугой радиуса R=A1C1=D1F1, можно получить искомое положение точек развертки A0 и D0.
Следующую грань АBDE вращают вокруг ребра AD. На перпендикулярах, по которым перемещаются точки B4 и E4 делают засечки из точекA0 и D0 дугой радиуса R=A1B1=D1E1. Аналогично строится развертка последней боковой грани призмы.
Процесс последовательного нахождения граней призмы вращением вокруг ребер можно представить как раскатку призмы на плоскость параллельную П4 и проходящую через ребро С4F4.
Построение на развертке точки К, принадлежащей боковой грани АBDE, ясно из рисунка. Предварительно через эту точку по грани провели прямую NМ, параллельную боковым ребрам, которая затем построена на развертке.
| РАЗВЕРТКА ЦИЛИНДРИЧЕСКОЙ ПОВЕРХНОСТИ |
Развертка цилиндрической поверхности выполняется аналогично развертке призмы. Предварительно в заданный цилиндр вписывают n-угольную призму (рис.8.45). Чем больше углов в призме, тем точнее развертка ( приn →∞призма преобразуется в цилиндр).
| |
| Рисунок 8.45. Развертка цилиндрической поверхности |
| РАЗВЕРТКА КОНИЧЕСКОЙ ПОВЕРХНОСТИ |
Развертка конической поверхности выполняется аналогично развертке пирамиды, предварительно вписав в конус n-угольную пирамиду (рис.8.46).
| |
| Рисунок 8.46. Развертка конической поверхности |
Если задана поверхность прямого конуса, то развертка его боковой поверхности представляет круговой сектор, радиус которого равен длине образующей конической поверхности l, а центральный угол φ=360о r / l, где r – радиус окружности основания конуса.
| ПЛОСКОСТЬ КАСАТЕЛЬНАЯ К ПОВЕРХНОСТИ |
Касательные плоскости играют большую роль в геометрии. В теоретическом плане плоскости, касательные к поверхности, используются в дифференциальной геометрии при изучении свойств поверхности в районе точки касания.
Решение задач, возникающих при проектировании и конструировании поверхностей-оболочек, требует проведения касательных плоскостей и нормалей к поверхности. При построении на проекционном чертеже очерков поверхностей по заданному направлению проецирования, при определении контуров собственных теней также необходимо строить касательные плоскости к поверхности. Построение касательной плоскости к поверхности представляет частный случай пересечения поверхности плоскостью.
| Плоскость, касательная к поверхности, имеет общую с этой поверхностью точку, прямую или плоскую кривую линию. Плоскость в одном месте может касаться поверхности, а в другом пересекать эту поверхность. Линия касания может одновременно являться и линией пересечения поверхности плоскостью. Плоскость α (рис.8.47), представленную двумя касательными, проведенными в точке А поверхности Ф, называется касательной плоскостью к поверхности в данной ее точке. Любая кривая поверхности проходящая через точку А, имеет в этой точке касательную прямую, принадлежащую плоскости α. Не в каждой точке поверхности можно провести касательную плоскость. В некоторых точках касательная плоскость не может быть определена или не является единственной. Такие точки называютсяособыми точками поверхностей, например вершина конической поверхности. Прямую линию, проходящую через точку касания и перпендикулярную касательной плоскости, называют нормальюповерхности в данной точке. |
Рисунок 8.47. Плоскость, касательная к поверхности |
В зависимости от вида поверхности, касательная плоскость может иметь с поверхностью как одну общую точку, так и множество точек. В зависимости от того, с каким случаем касания, мы имеем дело, точки, принадлежащие поверхности подразделяют на эллиптические, параболические и гиперболические:
Если касательная плоскость имеет с поверхностью только одну общую точку, то все принадлежащие поверхности линии, проходящие через эту точку, будут расположены по одну сторону от касательной плоскости (рис.8.47). Такие точки называются эллиптическими.
В случае проведения касательной плоскости к торсовой поверхности, образованной непрерывным перемещением касательной прямой к некоторой пространственной кривой линии (частный случай - коническая поверхность), плоскость будет касаться поверхности по прямой линии – образующей. Точки, принадлежащие этой образующей, называются параболическими (рис.8.48).
Точки поверхности, касательная плоскость, к которым пересекает поверхность, называют гиперболическими (рис.8.49). Гиперболическая точка принадлежит линии, по которой касательная плоскость пересекает поверхность.
|
|
Рисунок 8.48. Параболические точки касания | Рисунок 8.49. Гиперболические точки касания |
|
ЗАДАНИЕ КАСАТЕЛЬНОЙ ПЛОСКОСТИ НА ЭПЮРЕ МОНЖА |
| Так как плоскость однозначно определяется двумя пересекающимися прямыми, то для построения касательной плоскости к поверхности в данной точке, достаточно через эту точку провести две линии принадлежащие поверхности и к каждой из них провести касательные в заданной точке. Касательной прямой к поверхности называется прямая, касательная к какой-либо кривой принадлежащей поверхности. Рассмотрим на примере (рис.8.50) построение касательной плоскости к параболоиду вращения Ф в точке М. Для решения этой задачи через точку М проведем две кривые плоские линии n и m принадлежащие поверхности Ф. Линия n - окружность, лежащая в горизонтальной плоскости уровня проведенной через точку М, линия m – парабола, лежащая в горизонтально проецирующей плоскости проведенной через вершину параболоида и точку М. Чтобы построить касательную плоскость достаточно провести к данным линиям касательные. Касательная к плоской кривой линии лежит в одной плоскости с ней. Так как линия n лежит в горизонтальной плоскости то на плоскостьП1 она проецируется в натуральную величину n1, что позволяет сразу построить горизонтальную проекцию касательной к ней t11. На плоскость П2 - окружность проецируется в прямую n2, а фронтальная проекция касательной t21 будет с ней совпадать. Линия m лежит в горизонтально проецирующей плоскость, поэтому её горизонтальная проекция m1 – прямая, определяющая и горизонтальную проекцию касательной t12. | |
| Рисунок 8.50. Построение касательной плоскости к параболоиду вращения |
На плоскость П2 парабола проецируется с искажением m2, поэтому для построения касательной, повернем поверхность Ф вокруг оси, до совмещения плоскости параболы с фронтальной плоскостью проекций, проекция точки М2 при этом переместиться в положение точки М2*.
Через эту точку проведем касательную t22* к очерку параболоида. И обратным вращением находим проекцию касательной t22.
Две пересекающиеся в точке М2 прямые t21 и t22 определяют положение фронтальной проекции касательной плоскости α2, а прямые t11 иt12 – горизонтальную проекцию касательной плоскость α1.
Таким образом на эпюре получена плоскость α касательная к поверхности параболоида вращения в точке М.
| ПОВЕРХНОСТЬ КАСАТЕЛЬНАЯ К ПОВЕРХНОСТИ |
Две поверхности могут соприкасаться одна с другой в точке (рис.8.51), по прямой (рис.8.52) или по кривой линии (рис.8.53). Соприкасание может быть внешнее (рис.8.51) или внутреннее (рис.8.53).
|
|
Рисунок 8.51.Внешнее касание шара и конуса | Рисунок 8.52. Касание цилиндра и конуса |
| Соприкасание поверхностей 2-го порядка можно рассматривать как частный случай их пересечения. При этом справедливо следующее положение: если биквадратная кривая линия пересечения двух поверхностей второго порядка распадается на пару совпавших кривых 2-го порядка или на четыре совпавшие прямые, то имеется касание поверхностей по линии 2-го или 1-го порядка соответственно. Отметим без доказательства следующие следствия частных случаев касания поверхностей второго порядка: 1. Если две поверхности 2-го порядка касаются в трех точках, то они соприкасаются по кривой 2-го порядка; 2. Если две поверхности 2-го порядка касаются друг друга по кривой линии, то эта линия является кривой 2-го порядка; 3. Если две поверхности 2-го порядка описаны около третьей поверхности 2-го порядка (или вписаны в неё), то они пересекаются по линии, распадающейся на две кривые 2-го порядка (теорема Монжа).
|
Рисунок 8.53. Внутреннее касание шара и конуса |
|
|
Лекция № 9
Аксонометрические проекции. Стандартные аксонометрические проекции. Основная теорема аксонометрии (теорема Польке). Окружность в аксонометрии. Построение аксонометрических изображений.
| АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ |
Аксонометрические изображения широко применяются благодаря хорошей наглядности и простоте построений.
Слово «аксонометрия» в переводе с греческого означает измерение по осям. Аксонометрический метод может сочетаться и с параллельным, и с центральным проецированием при условии, что предмет проецируется вместе с координатной системой.
Сущность метода параллельного аксонометрического проецирования заключается в том, что предмет относят к некоторой системе координат и затем проецируют параллельными лучами на плоскость вместе с координатной системой. Стандартные резьбовые крепежные детали и их условные обозначения Для соединения деталей применяются стандартные крепежные резьбовые детали: болты, винты, шпильки, гайки
На рисунке 9.1 показана точка А, отнесенная к системе прямоугольных координат xyz. Вектор S определяет направление проецирования на плоскость проекций П*. Аксонометрическую проекцию А1* горизонтальной проекции точки А принято называть вторичной проекцией. Искажение отрезков осей координат при их проецировании на П' характеризуется так называемым коэффициентом искажения. Коэффициентом искажения называется отношение длинны проекции отрезка оси на картине к его истинной длине. Так по оси x* коэффициент искажения составляет u=0*x*/0x, а по оси y* и z* соответственно υ=0*y*/0y и ω=0*z*/0z. В зависимости от отношения коэффициентов искажения аксонометрические проекции могут быть: Изометрическими, если коэффициенты искажения по всем трем осям равны между собой; в этом случае u=υ=ω; Выполнение графических работ Метод Монжа Начертательная геометрия |
| |
| Рисунок 9.1. Сущность метода аксонометрического проецирования |
Диметрическими, если коэффициенты искажения по двум любым осям равны между собой, а по третьей – отличается от первых двух;Перспективы интерьера Мастерская живописи и рисунка История искусства
Триметрическими, если все три коэффициента искажения по осям различны.
Аксонометрические проекции различаются также и по тому углу φ, который образуется проецирующим лучом с плоскостью проекций. Если φ≠ 90o, то аксонометрическая проекция называется косоугольной, а если φ= 90o – прямоугольной.
| Деталирование чертежей Чтение чертежа общего вида Hа пpоизводстве для изготовления изделия необходимы чеpтежи деталей этого изделия. Выполнение чеpтежей деталей по чеpтежу общего вида данного изделия называется деталиpованием. Чеpтеж детали должен быть пpедельно ясным, четким, без лишних изобpажений и надписей. ОСНОВНАЯ ТЕОРЕМА АКСОНОМЕТРИИ (теорема ПОЛЬКЕ) |
Рассмотрев общие сведения об аксонометрических проекциях, можно сделать следующие выводы:
- аксонометрические чертежи обратимы;
- аксонометрическая и вторичная проекции точки вполне определяют её положение в пространстве.
Аксонометрические проекции обратимы, если известна аксонометрия трех главных направлений измерений фигуры и коэффициенты искажения по этим направлениям.
Аксонометрические проекции фигуры являются её проекциями на плоскости произвольного положения при произвольно выбранном направлении проецирования.
Очевидно возможно и обратное. На плоскости можно выбрать произвольное положение осей с произвольными аксонометрическими масштабами.
В пространстве всегда возможно такое положение натуральной системы прямоугольных координат и такой размер натурального масштаба по осям, параллельной проекцией которых является данная аксонометрическая система.
Немецкий ученый Карл Польке (1810-1876) сформулировал основную теорему аксонометрии: три отрезка прямых произвольной длины, лежащих в одной плоскости и выходящих из одной точки под произвольными углами друг к другу, представляют параллельную проекцию трех равных отрезков, отложенных на координатных осях от начала.
Согласно этой теореме, любые три прямые в плоскости, исходящие из одной точки и не совпадающие между собой, можно принять за аксонометрические оси. Любые отрезки произвольной длинны на этих прямых, отложенные от точки их пересечения, можно принять за аксонометрические масштабы. Эта система аксонометрических осей и масштабов является параллельной проекцией некоторой прямоугольной системы координатных осей и натуральных масштабов.
В практике построения аксонометрических изображений обычно применяют лишь некоторые определенные комбинации направлений аксонометрических осей и аксонометрических масштабов: прямоугольная изометрия и диметрия, косоугольная фронтальная диметрия, кабинетная проекция и др.
| СТАНДАРТНЫЕ АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ |
Согласно ГОСТ 2.317-69, из прямоугольных аксонометрических проекций рекомендуется применять прямоугольные изометрию идиметрию.
| Между коэффициентами искажения и углом φ, образованным направлением проецирования и картинной плоскостью, существует следующая зависимость: u2+υ2+ω2=2+ctq2φ, если φ=90o, то u2+υ2+ω2=2, В изометрии u=υ=ω и, следовательно, 3u2=2, откуда u=2/3 ≈ 0,82. Таким образом, в прямоугольной изометрии размеры предмета по всем трем измерениям сокращаются на 18 %. ГОСТ рекомендует изометрическую проекцию строить без сокращения по осям координат (рис.9.2), что соответствует увеличению изображения против оригинала в 1,22 раза. |
Рисунок 9.2. Расположение осей в изометрии |
| При построении прямоугольной диметрической проекции сокращение длин по оси y' (рис.9.3) принимают вдвое больше, чем по двум другим, т.е. полагают, что u=ω, а υ=0,5u. Тогда 2u2+(0,5u)2=2, откуда u2=8/9 и u≈0,94, а υ=0,47. В практических построениях от таких дробных коэффициентов обычно отказываются, вводя масштаб увеличения, определяемый соотношением 1/0,94=1,06, и тогда коэффициенты искажения по осямx' и z' равны единице, а по оси y' вдвое меньше υ=0,5. Из косоугольных аксонометрических проекций ГОСТом предусмотрено применение фронтальной и горизонтальной изометрии и фронтальной диметрии (последнюю ещё называют кабинетной проекцией). |
Рисунок 9.3. Расположение осей в диметрии |
| ОКРУЖНОСТЬ В АКСОНОМЕТРИИ |
| При параллельном проецировании окружности на какую-нибудь плоскость П* получаем ее изображение в общем случае в виде эллипса (рис. 9.4). Как бы ни была расположена плоскость окружности, сначала целесообразно построить параллелограмм A*B*C*D* – параллельную проекцию квадрата ABCD, описанного около данной окружности, а затем с помощью восьми точек и восьми касательных вписать в него эллипс. Точки 1, 3, 5 и 7 – середины сторон параллелограмма. Точки 2, 4,6 и 8 расположены на диагоналях так, что каждая из них делит полудиагональ в соотношении 3:7. Действительно, на основании свойств параллельного проецирования можно записать, что А2/1О=A*2*/2*O*, Но А1/1О=(r√2-r)/r≈3/7. Из восьми касательных к эллипсу первые четыре – это стороны параллелограмма, а остальные t2, t4, t6 иt8– прямые, параллельные его диагоналям. Так касательная t2* к эллипсу параллельна диагоналиC*D*, Объясняется это тем, что t2* и C*D* являются проекциями двух параллельных прямых t2 и CD. | ||
| Рисунок 9.4. Проецирование окружности на плоскость |
Графические построения, предшествующие вычерчиванию самого эллипса, целесообразно выполнять в следующей последовательности (рис.9.5):
|
| |
| Рисунок 9.5. Построение эллипса |
ГОСТ 2.317-69 определяет положение окружностей, лежащих в плоскостях, параллельных плоскостям проекций для прямоугольной изометрической проекции (рис.9.6) и для прямоугольной диметрии (рис.9.7).
|
|
Рисунок 9.6. Изометрические проекции окружностей, расположенных в плоскостях параллельных плоскостям проекций | Рисунок 9.7. Диметрические проекции окружностей, расположенных в плоскостях параллельных плоскостям проекций |
Если изометрическую проекцию выполняют без искажения по осям x, y, z, то большая ось эллипсов 1,2, 3 равна 1,22, а малая ось -0.71 диаметра окружности.
Если изометрическую проекцию выполняют с искажением по осям x, y, z, то большая ось ось эллипсов 1, 2, 3 равна диаметру окружности, а малая - 0.58 диаметра окружности.
Если димметрическую проекцию выполняют без искажения по осям x и z то большая ось эллипсов 1, 2, 3 равна 1,06 диаметра окружности, а малая ось эллипса 1 - 0.95, эллипсов 2 и 3 - 0.35 диаметра окружности.
Если диметрическую проекцию выполняют с искажения по осям x и z, то большая ось эллипсов 1, 2, 3 равна диаметру окружности, а малая ось эллипса 1 - 0.9, эллипсов 2 и 3 - 0,33 диаметра окружности.
1-эллипс (большая ось расположена под углом 900 к оси y); 2-эллипс (большая ось расположена под углом 900 к оси z); 3-эллипс (большая ось расположена под углом 900 к оси x).
| ПОСТРОЕНИЕ АКСОНОМЕТРИЧЕСКИХ ИЗОБРАЖЕНИЙ |
| Переход от ортогональных проекций предмета к аксонометрическому изображению рекомендуется осуществлять в такой последовательности (рис. 9.8): 1. На ортогональном чертеже размечают оси прямоугольной системы координат, к которой и относят данный предмет. Оси ориентируют так, чтобы они допускали удобное измерение координат точек предмета. Например, при построении аксонометрии тела вращения одну из координатных осей целесообразно совместить с осью тела. 2. Строят аксонометрические оси с таким расчетом, чтобы обеспечить наилучшую наглядность изображения и видимость тех или иных точек предмета. 3. По одной из ортогональных проекций предмета чертят вторичную проекцию. 4. Создают аксонометрическое изображение, для наглядности делают вырез четверти. | |
| Рисунок 9.8. Построение аксонометрического изображения |
ГОСТ 2.317-69 определяет условности и способы нанесения размеров при построении аксонометрического изображения, основное внимание следует обратить на следующих:
|
|
Рисунок 14.9 Штриховка в аксонометрии |
Линии штриховки сечения в аксонометрических проекциях наносят параллельно одной из диагоналей проекций квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям.
При нанесении размеров выносные линии проводят параллельно аксонометрическим осям, размерные линии – параллельно измеряемому отрезку.
В аксонометрических проекциях спицы маховиков и шкивов, ребра жесткости и подобные элементы штрихуют.
- 1.Двумя точками ( а и в ).
- 2. Двумя плоскостями ( .
- 3. Двумя проекциями.
- Взаимное положение двух прямых. Параллельные прямые. Пересекающиеся прямые. Скрещивающиеся прямые.
- 1. Параллельные прямые линии.
- 2. Пересекающиеся прямые.
- 3. Скрещивающиеся прямые
- Многогранники
- Сборочный чертеж спецификация
- Цилиндрическая винтовая линия.
- Коническая винтовая линия.