Математические методы и модели в экономике
ВВЕДЕНИЕ
Удивительно высокая эффективность математики в естественных и технических науках постоянно подтверждается всей практической деятельностью человека. Наиболее грандиозные технические проекты XX и начала XXI века без использования мощного математического инструментария не могли бы быть осуществлены в современном виде и качестве при минимальном количестве катастрофических ошибок. Для экономических наук и экономики вообще дело обстоит сложнее. Однако, даже самый общий взгляд на проблему приводит к осознанию того, что тезис о возможной высокой эффективности математики в экономике является вполне естественными и логичным, так как вся математика изначально и многие её разделы в последствий, своим происхождением и развитием обязаны именно практической, хозяйственной, экономической жизни общества.
В то же время, справедливость общих положений ещё не означает их безусловного приоритета в каждом конкретном случае, а любой метод в любой области знания имеет свою сферу применения, подчас весьма ограниченную. Поэтому, не следует преувеличивать и тем более абсолютизировать роль математических методов и математики вообще, что и вызывает у обучающихся негативное отношение к предмету: существует широкий класс экономических структур, управление которыми осуществляется на интуитивном уровне без какого-либо использования математических моделей и методов и даёт вполне приемлемые результаты. Таким структурам относятся отдельные предприятия мелкого масштаба. Применение математики в организациях такого типа сводится к элементарным арифметическим расчётам в рамках задач бухгалтерского учёта, что создаёт и укрепляет иллюзию возможности успешного управления любыми экономическими системами без использования какой-либо серьёзной математики вообще.
Однако такая точка зрения является излишне упрощённой.
Математическая модель объекта – это его гомоморфное отображение в виде совокупности уравнений, неравенств, логических отношений, графиков, условный образ объекта, созданный для упрощения его исследования, получения о нём новых знаний, анализа и оценки принимаемых решений в конкретных или возможных ситуациях.
Экономико-математическое моделирование, являясь одним из эффективных методов описания сложных социально-экономических объектов и процессов в виде математических моделей, превращается тем самым в часть самой экономики, вернее сплав экономики, математики и кибернетики.
В составе экономико-математических методов можно выделить следующие научные дисциплины и их раздели:
-
Экономическая кибернетика (системный анализ экономики, теория экономической информации и теория управляющих систем);
-
Математическая статистика (дисперсионный анализ, корреляционный анализ, регрессионный анализ, многомерный статистический анализ, факторный анализ, кластерный анализ, частотный анализ, теория индексов и др.);
-
Математическая экономика и эконометрика (теория экономического роста, теория производственных функций, межотраслевые балансы, национальные счета, анализ спроса и потребления, региональный и пространственный анализ, глобальное моделирование и др.);
-
Методы принятия оптимальных решений (математическое программирование, сетевые и программно-целевые методы планировании и управления, теория массового обслуживания, теория и методы управления запасами, теория игр, теория и методы принятия решений, теория расписаний и др.);
-
Специфические методы и дисциплины (модели свободной конкуренции, модели монополии, модели индикативного планирования, модели теории фирмы и др.);
-
Экспериментальные методы изучения экономики (математические методы анализа и планирования экономических экспериментов, имитационное моделирование, деловые игры, методы экспертных оценок и др.).
Экономико-математические модели можно классифицировать по следующим основным признакам
-
По общему целевому назначению – теоретико-аналитические и прикладные модели;
-
По степени агрегирования объектов – микроэкономические и макроэкономические модели;
-
По конкретному предназначению – балансовые (требование соответствия наличия ресурсов и их использования), трендовые (развитие моделируемой системы через длительную тенденцию её основных параметров), оптимизационные, имитационные (в процессе машинной имитации изучаемых систем или процессов) модели;
-
По типу информации, используемой в модели, - аналитические и идентифицируемые (на базе апостериорной, экспериментальной информации) модели;
-
По учёту фактора неопределённости – детерминированные и стохастические модели;
-
По характеристике математических объектов или аппарата – матричные модели, модели линейного и нелинейного программирования, корреляционно-регрессионные модели, модели теории массового обслуживания, модели сетевого планирования и управления, модели теории игр и т. п.;
-
По типу подхода к изучаемым системам – дескриптивные (описательные) модели (например, балансовые и трендовые) и нормативные модели (например, оптимизационные модели и модели уровня жизни).
Также по используемому инструментарию можно выделить равновесные, статические, динамические, непрерывные и другие модели.
Теоретические модели на базе априорной информации отображают общие свойства экономики и её компонентов с дедукцией выводов из формальных предпосылок.
Прикладные модели обеспечивают возможность оценки параметров функционирования конкретных технико-экономических объектов и обоснования выводов для принятия управленческих решений.
Макроэкономические модели обычно описывают экономику страны ка единое целое, связывая между собой укрупнённые материальные и финансовые показатели: ВВП, потребление, инвестиции, занятость, бюджет, инфляцию, ценообразование и др.
Микроэкономические модели описывают взаимодействие структурных и функциональных составляющих экономики либо их автономное поведение в переходной неустойчивой или стабильной рыночной среде, стратегии поведения фирм в условиях олигополии с использованием методов оптимизации и теории игр и т. п.
Оптимизационные модели связаны в основном с микроуровнем, на макроуровне результатом рационального выбора поведения становится некоторое состояние равновесия.
Детерминированные модели предполагают жёсткие функциональные связи между переменными модели, а стохастические модели допускают наличие случайных воздействий на исследуемые показатели и используют инструментарии теории вероятностей и математической статистики для их описания.
Равновесные модели, присущие рыночной экономике, описывающие поведение субъектов хозяйствования как в стабильных устойчивых состояниях, так и в условиях нерыночной экономики, где неравновесие по одним параметрам компенсируется другими факторами.
Статические модели описывают состояние экономического объекта в конкретный текущий момент или период времени; динамические модели, напротив, включают взаимосвязи переменных во времени, описывая силы и взаимодействия процессов в экономике.
К числу сложной комбинированной экономико-математической модели, например, можно отнести экономико-математическую модель межотраслевого баланса, являющуюся прикладной, макроэкономической, аналитической, дескриптивной, детерминированной, балансовой, матричной моделью, причём выделяют как статические, так и динамические модели межотраслевого баланса.