3. АНТАГОНИСТИЧЕСКИЕ ИГРЫ
Задача принятия решения, рассматриваемая в рамках системного подхода, содержит три основные компоненты: в ней выделены система, управляющая подсистема и среда. Теперь мы переходим к изучению задач принятия решения, в которых на систему воздействует не одна, а несколько управляющих подсистем, каждая из которых имеет свои цели и возможности действий. Такой подход к принятию решений называется теоретико-игровым, а математические модели соответствующих взаимодействий называются играми. Ввиду различия целей управляющих подсистем, а также определенных ограничений на возможности обмена информацией между ними, указанные взаимодействия носят конфликтный характер. Поэтому всякая игра представляет собой математическую модель конфликта. Ограничимся случаем, когда управляющих подсистем две. Если цели систем противоположны, конфликт называется антагонистическим, а математическая модель такого конфликта называется антагонистической игрой..
В теоретико-игровой терминологии 1-я управляющая подсистема называется игроком 1, 2-я управляющая подсистема - игроком 2, множества их альтернативных действий называются множествами стратегий этих игроков. Пусть Х - множество стратегий игрока 1, Y - множество стратегий игрока 2. Состояние системы однозначно определяется выбором управляющих воздействий подсистемами 1 и 2, то есть выбором стратегий x X и y Y. Пусть F(x,y)- оценка полезности для игрока 1 того состояния системы, в которое она переходит при выборе игроком 1 стратегии х и игроком 2 стратегии у. Число F(x,y) называется выигрышем игрока 1 в ситуации (x,y), а функция F - функцией выигрыша игрока 1. Выигрыш игрока 1 одновременно является проигрышем игрока 2 , то есть величиной, которую первый игрок стремится увеличить, а второй – уменьшить. Это и есть проявление антагонистического характера конфликта: интересы игроков полностью противоположны (то, что выигрывает один, проигрывает другой).
Антагонистическую игру естественно задать системой Г=(Х, Y, F). Заметим, что формально антагонистическая игра задается фактически
так же, как и задача принятия решения в условиях неопределенности - если отождествить управляющую подсистему 2 со средой. Содержательное различие между управляющей подсистемой и средой состоит в том, что поведение первой носит целенаправленный характер. Если при составлении математической модели реального конфликта у нас есть основание (или намерение) рассматривать среду как противника, цель которого - принести нам максимальный вред, то такую ситуацию можно представить в виде антагонистической игры. Другими словами, антагонистическую игру можно трактовать как крайний случай ЗПР в условиях неопределенности, характеризуемый тем, что среда рассматривается как противник, имеющий цель. При этом мы должны ограничить виды гипотез о поведении среды.