Тесселяции
Тесселяции, известные также как покрытие плоскости плитками (тайлинг), являются коллекциями фигур, которые покрывают всю математическую плоскость, совмещаясь друг с другом без наложений и пробелов. Правильные тесселяции состоят из фигур в виде правильных многоугольников, при совмещении которых все углы имеют одинаковую форму. Существует всего три многоугольника, пригодные для использования в правильных тесселяциях. Это - правильный треугольник, квадрат и правильный шестиугольник. Полуправильными тесселяциями называют такие тесселяции, в которых использованы правильные многоугольники двух или трех типов и все вершины одинаковы. Существует всего 8 полуправильных тесселяций. Вместе три правильных тесселяции и восемь полуправильных носят название Архимедовых. Тесселяции, в которых отдельные плитки являются узнаваемыми фигурами, являются одной из основных тем творчества Эшера. В его записных книгах содержатся более 130 вариантов тесселяций. Он использовал их в огромном количестве своих картин, среди которых "День и ночь" (1938), серия картин "Предел круга" I-IV, и знаменитые "Метаморфозы" I-III (1937-1968). Примеры ниже - картины современных авторов Холлистера Девида и Роберта Фатауэра.
Дэвид Холлистер "Семь птиц". На этой картине изображены семь птиц, две из которых изображены в негативе на фоне ландшафта города Ахо в Аризоне. Последовательно уменьшающиеся фигуры птиц совмещаются друг с другом в виде фрактальной тесселяции. Хвостовые перья каждой птицы являются разделяют конструкцию напополам, отсекая примерно треть расстояния между кончиками крыльев. Каждая меньшая птица в свою очередь делит свою область аналогичным образом. Если этот процесс продолжать до бесконечности, получится набор точек, известный как множество Кантора или Канторова пыль.
Роберт Фатауэр "Фрактальные рыбы - сгруппированные группы". Это компьютерная работа, распечатанная на фотобумаге. Сквозь иллюминатор видны волны, но при ближайшем рассмотрении видно, что волны являются на самом деле фрактальной тесселяцией, состоящей из рыб.