9.2. Свойства простых операторов.
Для пустого оператора справедлива
Теорема 9.1. Пусть P предикат над информационной средой. Тогда имеет место свойство {P}{P}.
Доказательство этой теоремы очевидно: пустой оператор не изменяет состояние информационной среды (в соответствии со своей семантикой), поэтому его предусловие сохраняет истинность и после его выполнения.
Для оператора присваивания справедлива
Теорема 9.2. Пусть информационная среда IS состоит из переменной X и остальной части информационной среды RIS:
IS = (X, RIS).
Тогда имеет место свойство
{Q(F(X, RIS), RIS)} X:= F(X, RIS) {Q(X, RIS)} ,
где F(X, RIS) некоторая однозначная функция, Q предикат.
Доказательство. Пусть (X0, RIS0) некоторое произвольное состояние информационной среды IS, и пусть перед выполнением оператора присваивания предикат Q(F(X0, RIS0), RIS0) является истинным. Тогда после выполнения оператора присваивания будет истинен предикат Q(X, RIS), так как X получит значение F(X0, RIS0), а состояние RIS не изменяется данным оператором присваивания, и, следовательно, после выполнения этого оператора присваивания в этом случае
Q(X, RIS)=Q(F(X0, RIS0), RIS0).
В силу произвольности выбора состояния информационной среды теорема доказана.
Примером свойства оператора присваивания может служить пример 9.1.
Yandex.RTB R-A-252273-3