4.Четные,нечетные функции
Нечётные и чётные функции — функции, графики которых обладают симметрией относительно изменения знака аргумента. Это понятие важно во многих областях математического анализа, таких как теория степенных рядов и рядов Фурье. Такое название возникло как обобщение чётности степенных функций: функция f(x) = xn чётна тогда и только тогда, когда n чётно, и нечётна тогда и только тогда, когда n нечётно.
f(x) = x — пример нечётной функции.
f(x) = x2 — пример чётной функции.
f(x) = x3, нечётная
f(x) = x3 + 1 ни чётная, ни нечётная.
Другие определения:
Нечётная функция — функция, меняющая знак при изменении знака независимого переменного (симметричная относительно центра координат).
Чётная функция — функция, не изменяющая своего значения при изменении знака независимого переменного (симметричная относительно оси ординат).