logo
Для моделирования в Matlab и Scilab

Решение обыкновенных дифференциальных уравнений

Анализ поведения многих систем и устройств в динамике, а также решение многих задач в теории управления обычно базируются на решении систем обыкновенных дифференциальных уравнений (ОДУ). Их, как правило, представляют в виде системы из дифференциальных уравнений первого порядка в форме Коши с граничными условиями y(t0 tend, p)=b, где tend, t0 — начальные и конечные точки интервалов. Параметр t не обязательно означает время, хотя чаще всего решение дифференциальных уравнений ищется во временной области. Вектор b задает начальные и конечные условия.

Ниже коротко описаны численные методы решения обыкновенных дифференциальных уравнений (ОДУ) и некоторые вспомогательные функции, полезные для решения систем ОДУ.