logo
Конечные группы с заданными перестановочными подгруппами

3. Определения, примеры и общие свойства -перестановочных подгрупп

Напомним, что подгруппа группы перестановочна с подгруппой , если . Если перестановочна со всеми подгруппами группы , то она называется перестановочной [] или квазинормальной в [].

Так как для двух перестановочных подгрупп и произведение также является подгруппой в , то понятие перестановочных подгрупп является одним из наиболее важных обобщений понятия нормальных подгрупп.

Перестановочные подгруппы имеют много интересных свойств. Как известно, например, что каждая перестановочная подгруппа является восходящей [] и, если она является перестановочной подгруппой в некоторой конечной порождённой группе , то субнормальна в [].

Но фактически эти два результата были получены как обобщения следующего наблюдения: каждая перестановочная подгруппа конечной группы является субнормальной [].

Разрабатывая этот результат Ito и Szep доказали, что для каждой перестановочной подгруппы конечной группы , - нильпотентна [].

Немного позже было доказано, что при таких условиях,

[].

При некоторых естественных условиях мы встречаемся с ситуацией, когда некоторые подгруппы и группы неперестановочны, но существует подгруппа такая, что для некоторого .

Основываясь на этом наблюдении мы дадим следующие определения.

Определение 3.1 Пусть , - подгруппы группы и . Тогда мы говорим, что:

(1) является -перестановочной с , если для некоторого имеем .

(2) является наследственно -перестановочной с , если для некоторого .

Заметим, что -перестановочные подгруппы будут являются просто перестановочными подгруппами. Во втором приведённом случае мы имеем дело с -перестановочными подгруппами, которые были исследованы и использованы в [].

Рассмотрим следующих три основных примера:

Пример 3.2 Пусть - конечная группа, - силовская -подгруппа , - силовская -подгруппа . Тогда в общем случае , но существует такой, что - силовская -подгруппа группы .

Подгруппа конечной группы называется нормально погружённой, если каждая её силовская подгруппа является силовской подгруппой в некоторой нормальной подгруппе группы .

Пример 3.3 Пусть - конечная разрешимая группа, и - нормально погружённые подгруппы группы . Тогда является -перестановочной с .

Определение 3.4 Подгруппа группы называется (наследственно) -перестановочной, если она (наследственно) -перестановочна со всеми подгруппами группы .

Пример 3.5. Пусть , где и - симметричная группа из 3 символов. Ясно, что не является перестановочной ( для всех не тождественных элементов ). В тоже время - наследственно -перестановочна.

Рассмотрим теперь общие свойства -перестановочных подгрупп, изложенные в следующей теореме.

Теорема 3.6 Пусть , , подгруппы группы и . Тогда справедливы следующие утверждения:

(1) Если (наследственно) -перестановочна с , то (наследственно) -перестановочна с ;

(2) Если (наследственно) -перестановочна с , то (наследственно) -перестановочна с для всех ;

(3) Если и (наследственно)

-перестановочна с , тогда (наследственно) -перестановочна с в ;

(4) Если и (наследственно)

-перестановочна с в , тогда (наследственно) -перестановочна с ;

(5) Если , наследственно

-перестановочна с , то наследственно -перестановочна;

(6) Если (наследственно) -перестановочна с и , то (наследственно) -перестановочна с ;

(7) Если -перестановочна с и , то -перестановочна с .

Доказательство:

Утверждения (1), (2), (5), (6) и (7) очевидны.

(3) Пусть - элемент из (элемент ) такой что . Тогда

в и если , тогда

Таким образом подгруппа - (наследственно) -перестановочна с в .

Аналогично можно доказать утверждение (4).

Ч.т.д.