logo search
Математическая статистика

1. Предмет и методы математической статистики

Математическая статистика -- наука о математических методах анализа данных, полученных при проведении массовых наблюдений (измерений, опытов). В зависимости от математической природы конкретных результатов наблюдений статистика математическая делится на статистику чисел, многомерный статистический анализ, анализ функций (процессов) и временных рядов, статистику объектов нечисловой природы. Существенная часть статистики математической основана на вероятностных моделях. Выделяют общие задачи описания данных, оценивания и проверки гипотез. Рассматривают и более частные задачи, связанные с проведением выборочных обследований, восстановлением зависимостей, построением и использованием классификаций (типологий) и др.

Для описания данных строят таблицы, диаграммы, иные наглядные представления, например, корреляционные поля. Вероятностные модели обычно не применяются. Некоторые методы описания данных опираются на продвинутую теорию и возможности современных компьютеров. К ним относятся, в частности, кластер-анализ, нацеленный на выделение групп объектов, похожих друг на друга, и многомерное шкалирование, позволяющее наглядно представить объекты на плоскости, в наименьшей степени исказив расстояния между ними.

Методы оценивания и проверки гипотез опираются на вероятностные модели порождения данных. Эти модели делятся на параметрические и непараметрические. В параметрических моделях предполагается, что изучаемые объекты описываются функциями распределения, зависящими от небольшого числа (1-4) числовых параметров. В непараметрических моделях функции распределения предполагаются произвольными непрерывными. В статистике математической оценивают параметры и характеристики распределения (математическое ожидание, медиану, дисперсию, квантили и др.), плотности и функции распределения, зависимости между переменными (на основе линейных и непараметрических коэффициентов корреляции, а также параметрических или непараметрических оценок функций, выражающих зависимости) и др. Используют точечные и интервальные (дающие границы для истинных значений) оценки.

В математической статистике есть общая теория проверки гипотез и большое число методов, посвященных проверке конкретных гипотез. Рассматривают гипотезы о значениях параметров и характеристик, о проверке однородности (то есть о совпадении характеристик или функций распределения в двух выборках), о согласии эмпирической функции распределения с заданной функцией распределения или с параметрическим семейством таких функций, о симметрии распределения и др.

Большое значение имеет раздел математической статистики, связанный с проведением выборочных обследований, со свойствами различных схем организации выборок и построением адекватных методов оценивания и проверки гипотез.

Задачи восстановления зависимостей активно изучаются более 200 лет, с момента разработки К. Гауссом в 1794 г. метода наименьших квадратов. В настоящее время наиболее актуальны методы поиска информативного подмножества переменных и непараметрические методы.

Разработка методов аппроксимации данных и сокращения размерности описания была начата более 100 лет назад, когда К. Пирсон создал метод главных компонент. Позднее были разработаны факторный анализ Харман Г., Современный факторный анализ. -- М.: Статистика, 1972. и многочисленные нелинейные обобщения.

Различные методы построения (кластер-анализ), анализа и использования (дискриминантный анализ) классификаций (типологий) именуют также методами распознавания образов (с учителем и без), автоматической классификации и др.

Математические методы в статистике основаны либо на использовании сумм (на основе Центральной Предельной Теоремы теории вероятностей) или показателей различия (расстояний, метрик), как в статистике объектов нечисловой природы. Строго обоснованы обычно лишь асимптотические результаты. В настоящее время компьютеры играют большую роль в математической статистике. Они используются как для расчетов, так и для имитационного моделирования (в частности, в методах размножения выборок и при изучении пригодности асимптотических результатов).