logo search
Математическая статистика

2.1 Основные понятия выборочного метода

Пусть -- случайная величина, наблюдаемая в случайном эксперименте. Предполагается, что вероятностное пространство задано (и не будет нас интересовать).

Будем считать, что, проведя раз этот эксперимент в одинаковых условиях, мы получили числа , , , -- значения этой случайной величины в первом, втором, и т.д. экспериментах. Случайная величина имеет некоторое распределение , которое нам частично или полностью неизвестно.

Рассмотрим подробнее набор , называемый выборкой.

В серии уже произведенных экспериментов выборка -- это набор чисел. Но если эту серию экспериментов повторить еще раз, то вместо этого набора мы получим новый набор чисел. Вместо числа появится другое число -- одно из значений случайной величины . То есть (и , и , и т.д.) -- переменная величина, которая может принимать те же значения, что и случайная величина , и так же часто (с теми же вероятностями). Поэтому до опыта -- случайная величина, одинаково распределенная с , а после опыта -- число, которое мы наблюдаем в данном первом эксперименте, т.е. одно из возможных значений случайной величины .

Выборка объема -- это набор из независимых и одинаково распределенных случайных величин («копий »), имеющих, как и , распределение .

Что значит «по выборке сделать вывод о распределении»? Распределение характеризуется функцией распределения, плотностью или таблицей, набором числовых характеристик -- , , и т.д. По выборке нужно уметь строить приближения для всех этих характеристик.