logo search
О минимальных замкнутых тотально насыщенных не формациях конечных групп

Введение

Все рассматриваемые в работе группы предполагаются конечными. Используемую терминологию можно найти в [1, 2].

При изучении внутреннего строения, а также классификации насыщенных формаций важную роль играют так называемые минимальные насыщенные не -формации [3] или -критические формации [4]. Напомним, что насыщенная формация , называется минимальной насыщенной не -формацией, если все собственные насыщенные подформации содержатся в классе групп . Задача изучения формаций такого рода впервые была поставлена Л.А. Шеметковым на VI симпозиуме по теории групп [3]. Ее решение, в классе насыщенных формаций, получено А.Н. Скибой [5].

В теории тотально насыщенных формаций изучение минимальных тотально насыщенных не -формаций было начато А.Н.Скибой в книге [2], где было дано описание разрешимых минимальных тотально насыщенных не -формаций ( - формация всех разрешимых групп нильпотентной длины ). В работах автора [6-10] теория минимальных -замкнутых тотально насыщенных не -формаций получила свое дальнейшее развитие. Основными результатами в этом направлении являются следующие теоремы.

Теорема 1 [10]. Пусть и - -замкнутые тотально насыщенные формации, . Тогда и только тогда - минимальная -замкнутая тотально насыщенная не -формация, когда , где - такая монолитическая -минимальная не -группа с монолитом , что выполняется одно из следующих условий:

1) - группа простого порядка ;

2) - неабелева группа и , где - совокупность всех собственных -подгрупп группы ;

3) ,

где - самоцентрализуемая минимальная нормальная подгруппа в при всех , а либо группа простого порядка , либо такая монолитическая -минимальная не -группа с неабелевым монолитом , что , совпадает с -корадикалом группы и

где - совокупность всех собственных -подгрупп группы .

Теорема 2 [10]. Пусть и - -замкнутые тотально насыщенные формации, . Тогда и только тогда - минимальная -замкнутая тотально насыщенная не -формация когда удовлетворяет одному из следующих условий:

1) , где - такая монолитическая -минимальная не -группа с неабелевой минимальной нормальной подгруппой , что справедливо включение , где - совокупность всех собственных -подгрупп группы ;

2) ,

где и ;

3) ,

где , а - такая монолитическая группа с неабелевой минимальной нормальной подгруппой , что совпадает с -корадикалом группы , и .

В настоящей работе, основываясь на результатах работы [10], мы даем описание -критических формаций для некоторых наиболее известных формаций .