Теорема Поста
Существует метод проверки полноты системы, называемый теоремой Поста. Она основывается на выделении пяти классов Поста булевых функций:
класс функций сохраняющих 0
,
класс функций сохраняющих 1
,
класс самодвойственных функций
,
класс монотонных функций
, где подразумевается стандартный порядок булевой алгебры (при котором существуют и несравнимые элементы!),
класс линейных функций
, т.е. функция представима в виде полинома Жегалкина первой степени.
Можно доказать, что все эти классы являются замкнутыми, т.е. любая комбинация функций из одного класса остаётся в том же классе.
Теорема (Поста):система булевых функций полна тогда и только тогда, когда она целиком не лежит ни в одном из классов Поста.теорема Поста, которая гласит: для того чтобы система функций была базисной, необходимо и достаточно, чтобы она включала в себя хотя бы одну функцию, не принадлежащую 0, 1, 2, 3 и 4 классам
Рассмотрим пример: . Необходимо проверить полноту системы.
Функция принимает следующие значения:. Проверка принадлежности первых четырёх классов поста может быть проведена очень быстро. Для проверки линейности построим представление данных функций в виде полинома Жегалкина:
Поучается, что нелинейна.
Поучается, что нелинейна.
Принадлежность классам Поста обобщим в таблице:
| |||||
- | + | - | - | - | |
- | - | - | - | - |
Система функций является полной, более того, полной является уже система.Выразим стандартный базисчерез функцию. Воспользуемся тем, чтоне сохраняет ни 0, ни 1, значит:
Так как -- несамодвойственна, выразим константы через отрицание. Для этого найдём такой вектор, что. Видно, что это выполняется при. Значит,. Тогда 0 можно получить с помощью отрицания.
-- нелинейна, выразим коньюнкцию из полинома Жегалкина этой функции. Можно получить, что . Тогда
откуда .
- Содержание:
- Тема 1. Основные понятия теории множеств. Способы задания множеств. Операции над множествами. Диаграммы Венна. Свойства теоретико-множественных операций. Представление множеств в эвм. 5
- Операции над множествами.
- Свойства теоретико-множественных операций. Представление множеств в эвм.
- Многоместные отношения. Композиция отношений. Степень и ядро отношений.
- Свойства отношений. Представление отношений в эвм.
- Формулы. Реализация функций формулами. Равносильные формулы. Принцип двойственности.
- Дизъюнктивная нормальная форма.
- Конъюнктивная нормальная форма.
- Теорема Поста
- Геометрическая интерпретация минимизации функций алгебры логики.
- Метод неопределённых коэффициентов.
- Метод карт Карно
- Тема 4. Алгебраические системы. Дистрибутивные решетки. Определение решетки, дистрибутивной решетки. Булева решетка. Алгебраические системы.
- Группоиды и полугруппы.
- Понятие группы.
- Кольца. Тела и поля.
- Решетки. Диаграмма Хассе.
- Дистрибутивная решетка.
- Булева алгебра.
- Тема 5. Поля Галуа и их применение. Классическая теория Галуа. Расширения полей и их классификация. Сепарабельные и нормальные расширения. Расширения полей q, f_q, c(t).
- 1.2 Расширения полей и их классификация.
- 1.1.Простое расширение поля.
- 1.2.Минимальный полином алгебраического элемента.
- 1.3.Строение простого алгебраического расширения поля.
- 1.4.Освобождение от алгебраической иррациональности в знаменателе дроби.
- 3. Сепарабельные и несепарабельные расширения.
- Тема 6. Многозначные логики. Возникновение и формализация модальных логик. Применение многозначных логик. Основные понятия
- Тема 7. Методы пересчета. Перестановки, сочетания, транспозиции. Методы генерирования перестановок: лексикографический порядок, векторы инверсий, вложенные циклы, транспозиция смежных элементов.
- Тема 8. Производящие функции. Способы построения производящих функций. Пример построения производящей функции при известном рекуррентном соотношении.
- Тема 10. Синтез автоматов. Абстрактный уровень проектирования автомата.
- Тема 11. Минимизация числа состояний автомата. Минимизация числа состояний синхронного автомата методом Хафмена.
- 6. Минимизация числа состояний методом таблиц.
- Тема 13. Автоматы с памятью. Канонический метод структурного синтеза. Построение логической схемы структурного автомата. Графический метод структурного синтеза.
- Тема 14. Сети Петри и их свойства. Основные понятия сетей Петри. Конечные разметки сети. Ограниченность сети. Моделирование с помощью сетей Петри. Формальное определение сети Петри.
- Тема 15. Описание систем с помощью сетей Петри. Применение сетей Петри при разработке графического языка программирования.
- Тема 17. Решение задач с помощью динамических двоичных функций. Синтез логической схемы, реализующей заданную булеву функцию, с использованием блоков исключения одной переменной.