Биномиальные коэффициенты — это коэффициенты бинома!
Только что мы использовали выражение биномиальных коэффициентов через факториал; но биномиальные коэффициенты имеют много и других определений. Воспользуемся теперь тем, что
| (26) |
Эта формула является определением биномиальных коэффициентов, если рассматривать её как тождество относительно u. Но нам нужно, чтобы u было неизвестной, принимающей в каждом конкретном решении искомой системы лишь одно значение.
Заметим, что
| (27) |
и, таким образом, если
u > 2t, | (28) |
то (t0), (t1), ..., (tt) — это цифры в записи числа (u+1)t в позиционной системе счисления с основанием u. Следовательно, биномиальные коэффициенты однозначно определяются тем условием, что равенство (26) и неравенства (27) и (28) одновременно выполнены хотя бы при одном значении u.
Лемма 5. Условие (23) эквивалентно относительно параметров r, t, c системе условий
| (29) (30) (31) (32) (33) |
Здесь все условия уже имеют необходимый нам вид.
Итак, мы показали, что условие (11) эквивалентно относительно параметра p системе, состоящей из экспоненциально диофантовых уравнений (15), (18), (22), (24), (25), (29)–(33). Чтобы получить требуемый экспоненциальный многочлен, осталось переименовать переменные r, s, t, c и u в x10, x11, x12, x13, x14, объединить по лемме 2 все уравнения в одно и преобразовать по лемме 1 это уравнение к искомому виду (10).