Скатерть Улама
Формулы (8) и (9) содержат возведение в степень. А нельзя ли для задания бесконечно многих простых чисел обойтись лишь сложением, вычитанием и умножением? Поищем ответ на этот вопрос.
Начнём с рассмотрения многочленов от одной переменной с натуральными коэффициентами; посмотрим, какие многочлены будут своими значениями иметь простые числа и в каком количестве.
Возьмём вначале многочлены первой степени (то есть линейные многочлены). Очевидно, что тривиальный многочлен x задаёт бесконечно много простых чисел, более того, все простые числа, но это неинтересный случай. А что можно сказать о многочлене ax+b (где a, b и x — натуральные числа)? Ясно, что если a и b имеют общий делитель, отличный от 1, то значение многочлена ax+b — число составное, кратное этому делителю. Случай же, когда a и b взаимно просты, гораздо менее очевиден.
Французский математик Лежандр (живший в XVIII веке) высказал гипотезу, что если a и b взаимно просты, то в арифметической прогрессии с первым членом b и разностью a встречается бесконечно много простых чисел. Эта гипотеза была доказана лишь в XIX столетии немецким математиком Леженом Дирихле.
Перейдём теперь к квадратным многочленам. Среди них есть «рекордсмены», например, многочлен x2 + x + 41 — его изучал ещё Леонард Эйлер. Этот многочлен принимает простые значения при x = 1, 2, ..., 40. При x = 41 его значение — составное.
Доказано, что никакой многочлен (отличный, разумеется, от константы) не может иметь в качестве значений только простые числа, но до сих пор не известно, существует ли многочлен (кроме линейного), среди значений которого встречается бесконечно много простых чисел.
Интерес к представлению простых чисел в виде значений квадратных многочленов недавно возродился в связи с неожиданным наблюдением С. М. Улама. Начав на спирали из всех натуральных чисел (рис. 1) отмечать простые числа, Улам с удивлением обнаружил, что простые числа выстраиваются по диагоналям, образуя довольно длинные цепочки. (Докажите, что числа, расположенные вдоль какой-либо диагонали в пределах, ограниченных на рис. 1 красными линиями — это значения некоторого квадратного многочлена с целыми коэффициентами).
197 | 196 | 195 | 194 | 193 | 192 | 191 | 190 | 189 | 188 | 187 | 186 | 185 | 184 | 183 |
198 | 145 | 144 | 143 | 142 | 141 | 140 | 139 | 138 | 137 | 136 | 135 | 134 | 133 | 182 |
199 | 146 | 101 | 100 | 99 | 98 | 97 | 96 | 95 | 94 | 93 | 92 | 91 | 132 | 181 |
200 | 147 | 102 | 65 | 64 | 63 | 62 | 61 | 60 | 59 | 58 | 57 | 90 | 131 | 180 |
201 | 148 | 103 | 66 | 37 | 36 | 35 | 34 | 33 | 32 | 31 | 56 | 89 | 130 | 179 |
202 | 149 | 104 | 67 | 38 | 17 | 16 | 15 | 14 | 13 | 30 | 55 | 88 | 129 | 178 |
203 | 150 | 105 | 68 | 39 | 18 | 5 | 4 | 3 | 12 | 29 | 54 | 87 | 128 | 177 |
204 | 151 | 106 | 69 | 40 | 19 | 6 | 1 | 2 | 11 | 28 | 53 | 86 | 127 | 176 |
205 | 152 | 107 | 70 | 41 | 20 | 7 | 8 | 9 | 10 | 27 | 52 | 85 | 126 | 175 |
206 | 153 | 108 | 71 | 42 | 21 | 22 | 23 | 24 | 25 | 26 | 51 | 84 | 125 | 174 |
207 | 154 | 109 | 72 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 83 | 124 | 173 |
208 | 155 | 110 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 123 | 172 |
209 | 156 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 171 |
210 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 |
211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 |
Рис. 1.
Ещё более удивительным оказалось то, что закономерность эта наблюдалась и тогда, когда спираль была продолжена (с помощью компьютера) до больших чисел — на рис. 2 светлыми точками отмечены простые числа на спирали из первых 10 000 чисел. Узор, изображённый на рис. 2, получил название «скатерть Улама».
Рис. 2.
Чтобы отмеченная закономерность проявилась, не обязательно начинать спираль с единицы. Например, значения многочлена x2 + x + 41 выстраиваются по диагоналям у спирали, начинающейся с числа 41 (рис. 3).
57 | 56 | 55 | 54 | 53 |
58 | 45 | 44 | 43 | 52 |
59 | 46 | 41 | 42 | 51 |
60 | 47 | 48 | 49 | 50 |
61 | 62 | 63 | 64 | 65 |
Рис. 3.
Феномен со стремлением простых чисел располагаться в цепочки вдоль диагоналей был обнаружен сравнительно недавно и ещё не получил какого-либо математического объяснения.