Лекции по математике часть II / Лекции-8
Фазовая плоскость.
Дифференциальное уравнение второго порядка
(24.4)
равносильно системе уравнений первого порядка
. (24.5)
Геометрически общее решение уравнения (24.4) или системы (24.5) можно представить семейством фазовых траекторий на фазовой плоскости . Особенно удобно такое представление в случае, когда функция не содержит явным образом независимого переменного t. Тогда система (24.5) имеет вид
(24.6)
и называется автономной системой. Фазовые траектории в этом случае удовлетворяют дифференциальному уравнению первого порядка
, (24.7)
которое каждой точке ставит в соответствие наклон проходящей через нее интегральной кривой.
Содержание
- Лекция 19.
- Лекция 20.
- Линейные неоднородные уравнения.
- Методы нахождения частного решения неоднородного линейного дифференциального уравнения (метод вариации произвольных постоянных, метод неопределенных коэффициентов и принцип суперпозиции).
- Фазовая плоскость.
- Точки покоя.
- K1 и k2 действительны и различны. Тогда общее решение системы (24.9) можно задать так: . При этом возможны следующие случаи: