Уравнение Ван дер Поля
Классическое нелинейное дифференциальное уравнение Ван дер Поля обычно записывается в форме:
. (1)
Это уравнение описывает колебательную систему с переменным коэффициентом демпфирования. Если перемещения малы, то коэффициент при отрицателен, что соответствует отрицательному демпфированию и, следовательно, развитию автоколебаний. При больших перемещениях демпфирование становится положительным, то есть устойчивые автоколебания могут существовать только при отсутствии демпфирования. Уравнение достаточно хорошо описывает работу некоторых генераторов колебаний. Качественный характер решения зависит от значения параметра. При малых сравнительно с единицей значенияхполучаются решения одного вида, тогда как при больших значенияхрешения имеют другой вид.
Задание: промоделировать уравнение (1) при значениях , , .
- Лабораторная работа №1 введение в Simulink
- Краткие сведения о пакете
- Лабораторная работа №2 моделирование колебательных систем
- Лабораторная работа №3 моделирование нелинейных и дискретных систем
- Уравнение Ван дер Поля
- Уравнение Рэлея
- Бомбометание с малых высот с учетом сопротивления воздуха
- 10. Модель логической системы
- 11. Моделирование случайных событий
- Лабораторная работа №4 моделирование и оптимизация электромеханической системы привода прокатных валков
- Лабораторная работа №5 оценивание случайных параметров и регрессия
- Лабораторная работа №6 выявление скрытых периодичностей в случайном процессе
- Лабораторная работа №7 генерация случайных процессов с заданной спектральной плотностью
- Лабораторная работа № 8
- Идентификация динамических объектов
- По переходным функциям
- Теоретические сведения
- Зарегистрированный график изменения выходной величины при скачкообразном возмущении на входе – переходную функцию технологического объекта управления (тоу) можно использовать для его идентификации.
- Идентификация с помощью настраиваемой модели
- Лабораторная работа № 9 моделирование объектов с распределенными параметрами
- Решение
- 3. ВpdeToolboxможно задавать граничные условияДирихлеиНеймана. Зададим сначала граничные условия Неймана, которые задаются следующим образом:
- После этого на правой и на левой границах пластины зададим условия Дирихле.H– весовой коэффициент, аr– заданная температура.
- 7.Для улучшения качества отображения решения можно сделать некоторые настройки. Нажать и в открывшемся диалоговом окне указать:
- Задания для самостоятельного выполнения