logo search
Voporosy_ch2_2012

Практическая реализация

На практике БПУ строится на основе ранее написанных процедур БПФ, в которых удаляется работа с мнимыми частями, переупорядочение перед рекурсивным вызовом и домножение на W при сборке.

22.

Сжатие без потерь (англ. Lossless data compression) — метод сжатия данных: видео, аудио, графики, документов представленных в цифровом виде, при использовании которого закодированные данные могут быть восстановлены с точностью до бита. При этом оригинальные данные полностью восстанавливаются из сжатого состояния. Этот тип сжатия принципиально отличается от сжатия данных с потерями. Для каждого из типов цифровой информации, как правило, существуют свои оптимальные алгоритмы сжатия без потерь.

Сжатие данных без потерь используется во многих приложениях. Например, оно используется во всех файловых архиваторах. Оно также используется как компонент в сжатии с потерями.

Сжатие без потерь используется, когда важна идентичность сжатых данных оригиналу. Обычный пример — исполняемые файлы и исходный код. Некоторые графические файловые форматы, такие как PNG, используют только сжатие без потерь; тогда как другие (TIFFMNG) или GIF могут использовать сжатие как с потерями, так и без.

23.

Импульсно-кодовая модуляция (ИКМ, англ. Pulse Code Modulation, PCM) используется для оцифровки аналоговых сигналов. Практически все виды аналоговых данных (видеоголосмузыкаданные телеметриивиртуальные миры) допускают применение ИКМ.

24.

Вейвлетное сжатие — общее название класса методов кодирования изображений, использующих двумерное вейвлет-разложение кодируемого изображения или его частей. Обычно подразумевается сжатие с потерей качества.

Существенную роль в алгоритмах вейвлетной компрессии играет концепция представления результатов вейвлет-разложения в виде нуль-дерева (zero-tree).

Упорядоченные в нуль-дереве битовые плоскости коэффициентов вейвлет-разложения огрубляются и кодируются далее с использованием статистических методов сжатия.

25.

Свойства вейвлета,

Вейвлетную функцию можно считать хорошо локализованной при выполнении условий:

(t) ≤ C/(1+|t|)1+, (f) ≤ C/(1+|f|)1+, С=const, при  > 0.

(t) dt = 0,

что обеспечивает выделение локальных особенностей сигналов в пределах вейвлетного носителя на уровне региональных изменений и тренда, нулевое усиление постоянной составляющей сигналов, нулевое значение частотного спектра вейвлета при =0, и локализацию спектра вейвлета в виде полосового фильтра с центром на определенной (доминирующей) частоте 0. Для анализа мелкомасштабных флюктуаций и особенностей высокого порядка, как правило, требуются и нулевые значения определенного количества последующих моментов:

tm(t) dt = 0.

Такие вейвлеты называются вейвлетами m-го порядка.

||(t)||2 = |(t)|2 dt < 

Оценка ограниченности и локализации может выполняться с использованием выражений:

|(t)| < 1/(1+|t|n), или |(ω)| < 1/(1+|ωo|n),

где o – средняя частота вейвлета. Число n должно быть как можно больше.

26.