№ 18. Разложение многочленов на множители
Тождественное преобразование, приводящее к произведению нескольких множителей - многочленов или одночленов, называютразложением многочлена на множители. В этом случае говорят, что многочлен делится на каждый из этих множителей.
Вынесение общего множителя за скобки. Это преобразование является непосредственным следствием распределительного закона ac + bc = c(a + b)
Пример. Разложить многочлен на множители 12 y 3 – 20 y 2. Решение. Имеем: 12 y 3 – 20 y 2 = 4 y 2 · 3 y – 4 y 2 · 5 = 4 y 2 (3 y – 5). Ответ. 4 y 2(3 y – 5).
Использование формул сокращенного умножения. Формулы сокращённого умножения позволяют довольно эффективно представлять многочлен в форме произведения.
Пример. Разложить на множители многочлен x 4 – 1. Решение. Имеем: x 4 – 1 = ( x 2 ) 2 – 1 2 = ( x 2 – 1)( x 2 + 1) = ( x 2 – 1 2 )( x 2 + 1) = ( x + 1)( x – 1)( x 2 + 1).Ответ. ( x + 1)( x – 1)( x 2 + 1).
Способ группировки. Этот способ заключается в том, что слагаемые многочлена можно сгруппировать различными способами на основе сочетательного и переместительного законов. На практике он применяется в тех случаях, когда многочлен удается представить в виде пар слагаемых таким образом, чтобы из каждой пары можно было выделить один и тот же множитель. Этот общий множитель можно вынести за скобку и исходный многочлен окажется представленным в виде произведения.
Пример. Разложить на множители многочлен x 3 – 3 x 2 y – 4 xy + 12 y 2. Решение. Сгруппируем слагаемые следующим образом: x 3 – 3 x 2 y – 4 xy + 12 y 2 = ( x 3 – 3 x 2 y ) – (4 xy – 12 y 2 ). В первой группе вынесем за скобку общий множитель x 2, а во второй − 4 y . Получаем: ( x 3 – 3 x 2 y ) – (4 xy – 12 y 2 ) = x 2 ( x – 3 y ) – 4 y ( x – 3 y ). Теперь общий множитель ( x – 3 y ) также можно вынести за скобки: x 2 ( x – 3 y ) – 4 y ( x – 3 y ) = ( x – 3 y )( x 2 – 4 y ). Ответ. ( x – 3 y )( x 2 – 4 y ).
Способ выделения полного квадрата. Метод выделения полного квадрата является одним из наиболее эффективных методов разложения на множители. Суть его состоит в выделении полного квадрата и последующего применения формулы разности квадратов.
Пример. Разложить на множители многочлен x 4 + 4 x 2 – 1. Решение. Имеем x4+4x2−1=x4+22x2+4−4−1=(x2+2)2−5=(x2+2−5)(x2+2−5) .
№19. Деление многочлена
Покажем, что
Частное и остаток от деления могут быть найдены в ходе выполнения следующих шагов:
1. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой .
2. Умножаем делитель на полученный выше результат деления (на первый элемент частного). Записываем результат под первыми двумя элементами делимого .
3. Вычитаем полученный после умножения многочлен из делимого, записываем результат под чертой .
4. Повторяем предыдущие 3 шага, используя в качестве делимого многочлен, записанный под чертой.
5. Повторяем шаг 4.
6. Конец алгоритма.
Таким образом, многочлен — частное деления, а — остаток.
№20. Теорема Безу.
Теорема Безу утверждает, что остаток от деления многочлена на двучлен равен .
Предполагается, что коэффициенты многочлена содержатся в некотором коммутативном кольце с единицей (например, в поле вещественных или комплексных чисел).
- 2. Геометрический смысл модуля действительного числа
- Обратная функция
- Операции над комплексными числами
- №12. Произведение и частное комплексного числа
- №14. Тригонометрическая и показательная формы
- №15. Формула Муавра и извлечение корней из комплексных чисел
- №17. . Алгебраические уравнения, теорема Гаусса.
- № 18. Разложение многочленов на множители
- Доказательство
- [Править]Следствия
- Бесконечно большие величины.
- Леммы о бесконечно больших.
- Определения
- №34. Основные теоремы о пределах
- Бесконечно большие величины.