Комбинаторика…………………………………………………….87
4.1..Мощность множества. Правила суммы, произведения, степени . . . . . .87
4.2. Размещения. Перестановки. Сочетания . . . . . . . . . . . . . . . . .. . . . . . . . ...89
4.3.. Производящие функции . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …..95
Список литературы……………………….…………………………..98
Введение
В последние годы инженеры-математики, занимающиеся прикладными исследованиями, все больше используют аппарат дискретной математики. Это объясняется необходимостью создания и эксплуатации современных ЭВМ, средств передачи и обработки информации, автоматизированных систем управления и проектирования.
С прикладной точки зрения интерес к функциям алгебры логики основан на том, что вся современная электроника (в т. ч. компьютерная) – цифровая 0-1 электроника. Успехи, достигнутые в этой области, позволили применять 0-1 электронику и там, где, казалось, должна была вечно господствовать континуальная электроника – в радиовещании и телевидении. Аудио и видеозапись весокого качества, в том числе и системы телевидения высокого разрешения, лазерные проигрыватели и т. п. – это тоже системы 0-1 электроники.
В настоящее время в учебных планах различных инженерных специальностей появилась дисциплина “Дискретная математика“. Учебники по этой дисциплине традиционно были рассчитаны на студентов специальностей “Математика“ и “Прикладная математика“. В связи с этим представляется целесообразным созда-ние учебного пособия по дисциплине “ Дискретная математика“ в котором основные разделы излагались бы в доступной форме для студентов младших курсов, но достаточно полно.
- Двузначная логика ………………………………………………5
- 2.5. Полнота и замкнутость……. ……………………………………….........50
- Комбинаторика…………………………………………………….87
- 1. Двузначная логика
- 1.1. Функции алгебры логики
- 1.2. Суперпозиция и формулы алгебры логики
- 1.3. Булева алгебра
- 1.4. Алгебра Жегалкина
- Нормальные формы логических функций
- Приведение логической формулы к днф
- Приведение днф функции к кнф
- Приведение кнф функции к днф
- 1.6. Минимизация функций
- 1.7. Полнота и замкнутость
- Закон двойственности
- 2.1. Элементарные функции
- 2.2. Основные свойства элементарных функций
- 2.3. Основные формы функций k – значных логик
- 2.4. Представление функций полиномами
- 2.5. Полнота и замкнутость
- 3. Элементы теории графов
- 3.1. Способы задания графов
- 3.2. Изоморфизм. Плоские графы. Реализуемость в r
- 3.3. Пути. Цепи. Циклы. Расстояния
- 3.4. Подграфы. Связность
- 3.5. Поиск путей в графах и минимальных путей в орграфах
- 3.6. Деревья и леса
- 3.7. Взвешенные графы
- Алгоритм Форда-Белмана.
- 4. Комбинаторика
- 4.1. Мощность множества. Правила суммы, произведения, степени
- 4.2. Размещения. Перестановки. Сочетания
- 4.3. Производящие функции