logo search
Информатика методичка по лабам

Элементы теории погрешностей абсолютная и относительная погрешности

Пусть – точное значение,– приближенное значение некоторого числа.

Абсолютная погрешность приближенного числа равна модулю разности между его точным и приближенным значениями:

Довольно часто точное значение неизвестно, поэтому вместо абсолютной погрешности используют понятие границы абсолютной погрешности:

Число называется предельной абсолютной погрешностью, оно равно или превышает значение абсолютной погрешности.

Основной характеристикой точности числа является относительная погрешность.

Относительная погрешность – это отношение абсолютной погрешности к приближенному значению числа:

Результат действий над приближенными числами представляет собой приближенное число. Погрешность результата выражается через погрешности первоначальных данных по правилам:

Общая формула для оценки предельной абсолютной погрешности функции нескольких переменных имеет вид:

где –предельная абсолютная погрешность числа .

Пример: Известно, чтогде

Найти ,, ,

Для оценки предельной абсолютной погрешности воспользуемся формулой:

Рис. 1. Вид экрана для вычисления абсолютной и относительной погрешностей

Исходные данные вводятся в блок А1:B6 (рис. 1). В ячейки С1:С6вводятся формулы для вычисления частных производных искомой функции. В ячейку Е8записывается формула . Модуль вводится с использованием функции =abs().

В ячейках D1:E6 рассчитываются верхние и нижние оценки значений переменных по формулам (аналогично для других переменных).

В ячейках B8:B10 вычисляются верхняя и нижняя оценки значений функции и само значение функции отличие вычисляемых функций в используемом наборе аргументов.

В ячейку Е9 записывается формула для вычисления абсолютной погрешности Найденная абсолютная погрешность не должна превышать значение предельной абсолютной погрешности, т.е.

В ячейку Е10 записывается формула для вычисления относительной погрешности

Предельную относительную погрешность заданной функции вычислим следующим образом:

Полученную формулу записывают в ячейку Е11. Найденная относительная погрешность не должна превышать значение предельной относительной погрешности, т.е.

Задания для самостоятельного выполнения.

Из таблицы 1 приложения взять исходные данные своего варианта. Вариант определяется по порядковому номеру в списке группы. Вычислить частные производные, верхнюю и нижнюю оценки значений функции и само значение функции, изменить формулу вычисления предельной относительной погрешности. Все остальные ячейки пересчитаются автоматически.