Теорема размерности.
Пусть вектор параллелен вектору1, тогда существует xR такое, что =x1.
Пусть векторы лежат в плоскости П и 1 не параллелен 2. Тогда всякий вектор П есть линейная комбинация векторов 1 и 2:
= х 1 +у2.
Пусть векторы 1, 2 и 3 не лежат в одной плоскости. Тогда всякий вектор есть их линейная комбинация:
= x1 + y2 + z3
Доказательство проведем только для случая 2.
Выберем произвольную точку О на плоскости П и отложим из нее векторы 1, 2 и . На направления О1 и О2 отложим направленные проекции вектора , рис. 6, обозначив их, соответственно, х2 и у2. Тогда получим требуемое равенство =х 1 +у2. Случай 2 доказан. Случай 1 - тривиален, а случай 3 доказывается аналогично с построением параллелепипеда.
Будем говорить, что векторы 1 и 1, рис. 6, образуют векторный базис на плоскости векторов, а числа х и у назовем координатами вектора в этом базисе. Аналогично можно определить базис на прямой и в пространстве, используя случаи 1 и 3 рассмотренной теоремы.
Таким образом, каждый вектор имеет свои координаты в заданном базисе и, наоборот, всякая тройка чисел (x,y,z) (в заданном порядке) определяет единственный вектор в этом базисе.
- Оглавление.
- Пример 1
- Пример 2
- Пример 3
- Вопрос.
- Глава I Математический формализм
- О понятии действительных чисел
- Формализм натуральных чисел.
- Операции, определяющие формирование множества рациональных чисел.
- Вывод 1.
- Вывод 2.
- Аксиома связи сложения и умножения.
- Задача 2.
- Вывод 3.
- Аксиоматизация множества действительных чисел.
- Аксиома непрерывности Кантора.
- Аксиоматическое обоснование евклидовой геометрии.
- О“Началах” Евклида.
- Аксиоматика д. Гильберта(1862-1943)
- Группа 1. Аксиомы соединения.
- Теорема 1.
- Теорема 2.
- Теорема 3.
- Группа 2. Аксиомы порядка.
- Определение.
- Группа 3. Аксиомы конгруэнтности.
- Теорема (о внешнем угле треугольника).
- Определение движения.
- Замечание 1.
- Вывод 1.
- Вывод 2.
- Группа 4. Аксиомы непрерывности.
- Замечание 2.
- Замечание 3.
- Вывод 3.
- Группа 5. Аксиома параллельности.
- Замечание 4.
- Два недостатка аксиоматики д. Гильберта.
- Структура векторного пространства.
- Модель направленных отрезков.
- Сложение обладает свойствами:
- Свойства операции умножения:
- Определение.
- Арифметическая модель векторного пространства.
- Теорема размерности.
- Вывод 1.
- Вывод 2.
- Вывод 3.
- Аксиомы скалярного произведения векторов.
- Следствие.
- Следствие.
- Вывод 4.
- Определение.
- Модель Вейля евклидовой геометрии.
- Арифметизация трехмерного евклидова пространства.
- Свойства операции откладывания вектора.
- Определение.
- Вывод 1.
- Вывод 2.
- Многомерное арифметическое евклидово пространство.
- Вывод 3.
- Замечание.
- Следствие 1.
- Основные факты в планиметрии Лобачевского.
- 1. Сумма углов многоугольника в плоскости l2.
- Следствие 2.
- Вывод 3.
- Главаii Свойства аксиоматических систем.
- Математические структуры и аксиоматические теории.
- Понятие отношений между объектами.
- Следствие 1.
- Пример 1.
- Определение.
- Следствие 2.
- Понятие математической структуры.
- Определение.
- Замечание 1.
- Формальная и содержательная аксиоматики. Теории и структуры.
- Рассмотрим пример.
- Вывод 1.
- Вывод 2.
- Определение.
- Изоморфизм.
- Пример 1.
- Пример 2.
- Определение изоморфизма.
- Вывод 3.
- Вывод 1.
- Независимость аксиоматической системы.
- Независимость аксиомы параллельности.
- Замечание 1.
- Дедуктивная полнота и категоричность системы аксиом.
- Определение (дедуктивной полноты).
- Определение (категоричности).
- Историческая роль V постулата Евклида в развитии оснований математики.
- Анализ текстовых парадоксов.
- Языковые свойства имен объектов.
- Пример 1.
- Пример 2.
- Пример 3.
- Проблема выразимости.
- Понятие искусственного языка.
- Понятие парадокса.
- “Ахиллес и черепаха”.
- Парадокс пустого множества.
- Парадокс достижимости в натуральном ряде.
- “Одно и то же, но по-разному”
- Пример 1.
- Пример 2.
- Заключение.
- Обозначения.
- Литература